Optical Modulation Analyzer Systems

Key Features

- Up to 65 GHz system bandwidth
- Up to 120 GBaud detectable baud rate
- Up to 160 GS/s sample rate
- Real-time acquisition for testing of coherent modulated optical communications links
- Built-in dispersion compensation, polarization de-multiplexing, and carrier recovery algorithms
- Supports DP-QPSK, DP-16QAM, and a wide variety of other PSK and QAM formats
- Support for custom modulation formats
- Built-in local oscillator
- Adaptive calibration — Receiver can be disconnected and reconnected without factory calibration

Teledyne LeCroy’s IQS25, IQS42 and IQS70 Coherent Optical Receivers integrate seamlessly with Teledyne LeCroy’s LabMaster 10Zi-A series of real-time oscilloscopes to provide up to 65 GHz system bandwidth for optical modulation analysis of dual-polarized signals up to 120 GBaud. The Optical-LinQ optical modulation analysis software package provides real-time calibration and control of the Coherent Optical Receiver, and a wide variety of analytical views and parameters.

Industry Leading System Bandwidth

The 70 GHz IQS70 Coherent Optical Receiver pairs with the LabMaster 10-65Zi-A oscilloscope to provide a system bandwidth of 65 GHz, enabling analysis of signals up to 120 GBaud symbol rate.

For standard applications, the 42 GHz IQS42 Coherent Optical Receiver provides up to 66 GBaud symbol rate analysis for DP-16QAM or DP-QPSK when used with the 36 GHz LabMaster 10-36Zi-A.

For low-rate applications, the 25 GHz IQS25 Coherent Optical Receiver paired with LabMaster 10-25Zi-A oscilloscope provides up to 46 GBaud symbol rate analysis.

Perfect Calibration, Every Time

In addition to providing the highest bandwidth, the IQS series Coherent Optical Receivers have pristine signal fidelity. Using precision measurements, the entire electrical signal path from the coherent receiver input to the oscilloscope input is de-embedded. A dynamic self-calibration between the IQS receiver and the oscilloscope enables field disconnection of the oscilloscope for use in other related applications, such as NRZ tributary electrical validation.

LabMaster 10Zi-A Oscilloscope Performance

LabMaster 10Zi-A is the highest-performance, most scalable oscilloscope system in the world. A single module is capable of two channels of 65 GHz bandwidth, 160 GS/s sample rate or four channels of 36 GHz, 80 GS/s sample rate. Up to 20 modules can be easily integrated into a single system, with the timing accuracy (<130 fs jitter between all channels) and ease of use of a single-box oscilloscope.
The Teledyne LeCroy IQS Coherent Optical Receivers with LabMaster 10Zi-A real-time oscilloscopes provides up to 65 GHz of bandwidth for optical modulation analysis of dual-polarized signals up to 120 Gbaud. That's the highest bandwidth commercial capability in the world.

This combined system is the market leader in OMA solutions; providing groundbreaking oscilloscope technology with a seamlessly integrated, intuitive interface and a uniquely scalable format that delivers unrivalled performance. The result is full characterization of an optical signal’s true performance... out of the box.

Seamless System Architecture

The Teledyne LeCroy IQS Coherent Optical Receivers leverage a system architecture that allows pairing of the coherent optical receiver with any compatible Teledyne LeCroy oscilloscope without any factory calibration. All required calibrations are built into Coherent Receiver and performed at the time of measurement. This architecture also enables the easiest upgrade path in the industry – add an additional or faster acquisition module to the oscilloscope, connect the IQS receiver, and resume analysis!

Seamless Multi-Module Configuration

Teledyne LeCroy’s ChannelSync™ architecture ensures superior timing accuracy, by design. Using a single 10 GHz distributed clock for all acquisition modules enables the lowest jitter between all channels, the simplest integration and connection and the highest confidence in results.

The single oscilloscope display gives easy access to all channels and analysis results, regardless of the number of acquisition modules.

Seamless Software Integration

Optical-LinQ is an intuitive and fully integrated software package for analysis of optically modulated signals. It runs entirely within the user interface of the LabMaster 10Zi-A. No other OMA on the market offers such integrated control of both oscilloscope and coherent receiver.

Optical-LinQ provides fully automated control of the IQS receiver, phase recovery algorithms, polarization de-multiplexing, as well as an exhaustive number of modulation analysis displays and parameters.

LabMaster MCM-Zi-A Master Control Module

The control, display, clocking, and analysis engine for the 10Zi-A oscilloscope. One MCM-Zi-A is used with multiple acquisition modules to best leverage your initial investment.

LabMaster 10 Zi-A Acquisition Module

A single acquisition module is available with and industry-leading four channels of 36 GHz of bandwidth, 80 GS/s sampling rate, expandable to 65 GHz bandwidth with 80 GS/s sampling rate.

IQS Coherent Optical Receiver

Up to 70 GHz of electrical bandwidth with internal local oscillator. Unit is controlled by LabMaster MCM-Zi-A Master Control Module through USB connection.

Optical-LinQ Optical Modulation Analysis Software

Provides fully automated control of the IQS receiver, phase recovery algorithms, polarization de-multiplexing, and a variety of modulation analysis displays and parameters.
With optical communications advancing at a rapid pace, equipment requirements are vast and ever-changing. It is critical that an OMA system be scalable to address tomorrow’s modulation formats and data rates. Rather than a monolithic, restrictive instrument, the Teledyne LeCroy OMA solution is a set of building blocks that can be easily upgraded and supplemented to address future test challenges.

Ideal for Characterizing

<table>
<thead>
<tr>
<th>Max Detectable Baud Rate</th>
<th>Bandwidth</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Gbps DP-QPSK signals</td>
<td>25 GHz dual-pol</td>
<td>MCM-Zi-A Master Control Module</td>
</tr>
<tr>
<td>200 Gbps DP-16QAM signals</td>
<td>36 GHz dual-pol</td>
<td>IQS25 Receiver</td>
</tr>
<tr>
<td>64 Gbaud single-pol signals</td>
<td>36 GHz single-pol</td>
<td>IQS42 Receiver</td>
</tr>
<tr>
<td>120 Gbaud dual-pol</td>
<td>65 GHz single-pol</td>
<td>IQS70 Receiver</td>
</tr>
</tbody>
</table>

Higher order coherent modulation formats provide ways to increase the data rate while keeping the Baud rate the same. Modulation formats such as 16QAM require a higher fidelity of measurement and having a sufficient bandwidth in the OMA is crucial. 36GHz of OMA system bandwidth provides an ideal platform for 200G 32Gbaud DP-16QAM coherent signal characterization.

Single carrier 400Gbps systems utilize higher order modulation format paired with higher Baud rates such as 56Gbaud. A 70GHz IQS70 coherent receiver and a LabMaster 10-65Zi-A allows comprehensive characterization of 56Gbaud signals and beyond on a single polarization, as well as dual polarization capabilities at 32+Gbaud.

Adding a second LabMaster 10-65Zi-A acquisition module turns it into the most capable OMA system on the market with a dual polarization system bandwidth of 65GHz. Achieve single carrier 400Gbps 56Gbaud DP-16QAM signal measurement with no need to return the instrument to the factory or recalibrate!
The most accurate characterization demands the most capable measurement system. The Teledyne LeCroy Optical Modulation Analyzer provides the highest system bandwidth (70 GHz), an architecture that combines ultra-precise timing synchronization with simple scalability, and the best-integrated and most feature-rich OMA software package in the industry.

1. World’s Highest Bandwidth Coherent Optical Receiver — 70 GHz performance enables detection of signals up to 120 Gbaud

2. World’s Highest Performing Real-Time Oscilloscope — up to 100 GHz bandwidth, 240 GS/s sample rate

3. World’s most seamlessly-integrated OMA software — Optical LinQ controls both IQS receiver and oscilloscope, and provides exhaustive measurement and visualization capabilities for standard modulation formats like DP-QPSK and DP-16QAM, as well as user-defined custom formats

4. Integrated, automatic calibration — disconnect and reconnect the IQS receiver from the oscilloscope without need for factory re-calibration

5. Modular — start with four channels of 25 or 36 GHz for 100G applications, upgrade to two channels of 65 GHz to allow single-pol 200G experiments, or add two more 65 GHz channels for true dual-pol 400G performance
6. ChannelSync architecture utilizes a 10 GHz distributed clock for precise alignment of all acquisition systems — jitter between all channels of less than 130 fs means no compromise relative to single-box oscilloscope systems

7. Wide oscilloscope bandwidth upgrade range (20 GHz - 100 GHz) provides investment protection

8. Single trigger circuit for all modules eliminates additive trigger jitter that occurs with 10 MHz clocking and trigger synchronization of multiple conventional oscilloscopes

9. Server-class multi-core processor combines with X-Stream II streaming architecture for fast acquisition and analysis — 33.6 GHz effective CPU clock rate and 24 GB of RAM standard (expandable to 192 GB)

10. 325 MB/s data transfer rate from the LabMaster to a separate PC with Teledyne LeCroy Serial Interface Bus (LSIB) option

11. Utilize the built-in 15.3” widescreen (16 x 9) high resolution WXGA color touch screen display — or connect your own with up to WQXGA 2560 x 1600 pixel resolution

13. Deepest standard toolbox with more measurements, more math, more power
Applications

Visibility for Component Testing
The amplitude and phase measurement capabilities of OpticalLinQ enable detailed component testing. It is now possible to directly measure the effects of a single component on the phase of the electric field.

Common applications and measurements include:
- Modulator research and development
- Modulator chirp measurements
- Dispersion measurements for dispersion compensation elements

Evaluation for Transmitter Testing
The high optical/electrical bandwidth is ideal for transmitter evaluation, tuning, and signal fidelity validation. And with 65 GHz of electrical bandwidth, it is now possible to test for the highest bandwidth electrical signal fidelity.

Common applications and measurements include:
- Transmitter control loop validation and testing
- Modulation format research and development
- Forward error correction testing

True BER Counting
OpticalLinQ offers both quick and convenient BER Estimates along with true and accurate BER counting capabilities. The BER set up panel allows you to configure the coding scheme from one of the common pre-set options, or define your own custom bit sequence and multiplex options.
Receiver Link Validation
Understanding system performance along the optical link or at the receiver itself is essential to determine the performance of the phase modulated signals. Users can enter fiber-based values for compensation of chromatic dispersion (CD).

Common applications and measurements include:
- State of Polarization versus time
- Total Link Dispersion

Custom Modulation Format Development
OpticalLinQ comes with pre-set support for many common optical modulation formats, including QPSK, 16QAM and 64QAM. If you are developing or working with non-conventional modulation formats, you can define your own format using Optical-LINQ's powerful custom modulation format definition capability.

Custom DSP Algorithm Validation
Test and validation of digital signal processing (DSP) algorithms is a vital part of the transceiver development. OpticalLinQ is equipped with built-in DSP algorithms such as CMA, MMA, Viterbi & Viterbi for you to use as tested reference algorithms. And the custom code integration feature lets you use and validate your own algorithms in MATLAB format.
The world leading OpticalLinQ software for analysis of optically modulated signals can now be used with any coherent optical receiver. Users can select a wide variety of analysis views and parametric measurements to gain a complete understanding of their optical signal path.

Unrivalled Software Integration
The OMA functions and controls are fully integrated in the LabMaster oscilloscope software. You can apply any of LabMaster’s extensive signal diagnosis tool kits directly on the OMA signals. LabMaster’s user-friendly interface also allow intuitive layout of visual and numerical analysis outputs which can be fully customized to your liking.

Analysis Views
Display the signal just the way you want it, using Optical-LINQ’s extensive list of visualization options:

- I vs. Q Constellation
- I vs. Q Trajectory
- Reference Symbols
- I Eye Diagram
- Q Eye Diagram
- Intensity Eye Diagram
- Phase Eye Diagram
- EVM % Eye Diagram
- Recovered I vs. Time
- Recovered Q vs. Time
- Intensity vs. Time
- Phase vs. Time
- EVM % vs. Time
- Phase Error vs. Time
- Carrier Phase vs. Time
- E-field Spectrum
- I Spectrum
- Q Spectrum
- S1, S2, S3 Polarization State
- Raw I vs. Time
- Raw Q vs. Time
- Calibration Buffer I
- Calibration Buffer Q

Parametric Measurements
OpticalLinQ includes the parametric measurements you need to quantify the health of your signal path and modulation. Selected measurements are presented in tabular format that is easily saved for documentation and further analysis.

Parametric Measurements List
- Error Vector Magnitude
- Q Factor
- BER Estimate
- I Bias Error
- Q Bias Error
- Quadrature Error
- IQ Skew
- IQ Offset
- IQ Imbalance
- Frequency Offset
- Magnitude Error
- Phase Error
- Polarization Mode Dispersion
- XY Skew
- Polarization Dependent Loss
OMA System Schematic Diagram
High Bandwidth, High Precision

LabMaster 10 Zi-A is the world's highest bandwidth (Up to 100 GHz) real time oscilloscope. The modular design allows more channels with better performance, and permits simple and easy upgrades. Yet, the operation is the same as any other oscilloscope – there is a single 10 GHz timebase clock, trigger circuit, and display for all acquisition modules and channels. Teledyne LeCroy’s ChannelSync architecture ensures precise synchronization of all acquisition modules and virtually eliminates jitter between channels for the highest possible phase performance.

Complete Customization

All configurations of LabMaster 10 Zi-A support the needs of researchers with complete customization capability through the use of the XDEV software capability. This provides the ability to integrate a MATLAB or other user-generated script into the oscilloscope’s processing stream – ideal for proprietary equalization and compensation algorithms.

Up to 325 MB/s Data Transfer

Teledyne LeCroy’s Serial Interface Bus (LSIB) to allow acquired data to be transferred to another computer at speeds up to 325 MB/s to leverage the LabMaster oscilloscope solely as a data acquisition device with fast offload of acquired data to another CPU for further analysis.

SDAIII-CompleteLinQ

Teledyne LeCroy’s SDAIII-CompleteLinQ Serial Data, Crosstalk and Noise Analysis toolset provides unique capabilities for serial data analysis. It is the only toolset to with simultaneous eye, jitter, noise and crosstalk analysis on multiple lanes.

SDAIII-CompleteLinQ’s Unique Capabilities:

- Four lanes of analysis
- Simultaneous jitter, noise and eye analysis on four lanes
- Extrapolated noise analysis with the new Crosstalk Eye
- Multi-scenario comparisons with the new Reference Lane
- LaneScape Comparison Mode
- Integrated fixture and channel de-embedding/emulation
- Multi-block system and crosstalk modeling with VirtualProbe
- Transmitter and receiver equalization modeling
Optical Modulation Analyzer

<table>
<thead>
<tr>
<th></th>
<th>IQS25 with LabMaster 10-25Zi-A</th>
<th>IQS42 with LabMaster 10-36Zi-A</th>
<th>IQS70 with LabMaster 10-65Zi-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Specifications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Detectable Baud Rate</td>
<td>46 GBaud</td>
<td>66 GBaud</td>
<td>120 GBaud</td>
</tr>
<tr>
<td>Error Vector Magnitude Noise Floor*</td>
<td>< 1.8% rms</td>
<td>< 1.8% rms</td>
<td></td>
</tr>
<tr>
<td>Amplitude Error</td>
<td>< 1.1% rms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase Error</td>
<td>< 0.9°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain Imbalance between I & Q</td>
<td>> 35 dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image Suppression*</td>
<td>> 35 dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td>< -22 dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Optical Polarizations</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Test conditions: Single Polarization, 13 GHz channel bandwidth, 2.5 GHz frequency offset, 14.5 dBm LO input power, 7.5 dBm signal power

Oscilloscope Acquisition Performance

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Channels</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bandwidth</td>
<td>25 GHz</td>
<td>36 GHz</td>
<td>65 GHz</td>
</tr>
<tr>
<td>Sample Rate</td>
<td>80 GS/s</td>
<td>80 GS/s</td>
<td>160 GS/s</td>
</tr>
<tr>
<td>Jitter Between Channels</td>
<td>< 250 fs_{rms}</td>
<td>< 250 fs_{rms}</td>
<td>< 130 fs_{rms}</td>
</tr>
<tr>
<td>ADC Resolution</td>
<td>8-bit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Memory per Channel</td>
<td>512 Mpt/Ch</td>
<td>512 Mpt/Ch</td>
<td>1024 Mpt/Ch</td>
</tr>
</tbody>
</table>

Internal timebase with 10 GHz clock frequency common to all input channels. Single, distributed 10 GHz clock for all channels ensures precise synchronization with timing accuracy between all channels identical to that provided within a single, conventional oscilloscope package.

Coherent Optical Receiver Performance

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical DUT Input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Wavelength Range</td>
<td>1527 to 1630 nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Input Power, Damage Level</td>
<td>+15 dBm</td>
<td>+25 dBm</td>
<td></td>
</tr>
<tr>
<td>Receiver Polarization</td>
<td>> 20 dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extinction Ratio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External LO Input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optical Input Wavelength Range</td>
<td>1527 to 1630 nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>External LO Oscillator Input Power Range</td>
<td>+0 dBm to +19 dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Input Peak Power (damage level)</td>
<td>+25 dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical Bandwidth</td>
<td>25 GHz typical</td>
<td>42 GHz typical</td>
<td>70 GHz typical</td>
</tr>
<tr>
<td>23 GHz minimum</td>
<td></td>
<td>37 GHz minimum</td>
<td>65 GHz minimum</td>
</tr>
<tr>
<td>Optical Phase Angle of I-Q Mixer After Correction</td>
<td>90° ±0.5°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative Skew After Correction</td>
<td>±1 ps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Oscillator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optical CW Output Power</td>
<td>+15.5 dBm</td>
<td>+12.2 dBm</td>
<td></td>
</tr>
<tr>
<td>Wavelength Range</td>
<td>1527.605 to 1567.132 nm (C-Band, standard)</td>
<td>1567.60 to 1608.760 nm (L-Band, optional)</td>
<td>1527.605 to 1608.760 nm (C+L Band, optional)**</td>
</tr>
<tr>
<td>Minimum Wavelength Step</td>
<td>~ 1 ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Frequency Step</td>
<td>100 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuning Time/Sweep Speed</td>
<td>< 30 s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute Wavelength Accuracy</td>
<td>10 ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linewidth (short term)</td>
<td>< 100 kHz, 25 kHz typical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sidelmode Suppression Ratio</td>
<td>55 dB typical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIN</td>
<td>-145 dB/Hz (10 MHz to 40 GHz)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* C+L Band option comes with a 3dB reduction in Maximum Output Power
OpticalLinQ Modulation Analysis Software

Eye Diagrams
- I, Q, EVM (EVM% vs. Time), Phase, Intensity
- All provided for both polarizations, independently or simultaneously

IQ Plots
- Constellation with and without vectors
- All provided for both polarizations, independently or simultaneously

Pattern Plots (Tracks/Trends)
- Recovered Data I & Q, Intensity, Phase (Intensity Angle), EVM (EVM% vs. Time), Phase Error vs. Time

Raw Traces
- Data I and Q

Spectra
- Efield, I and Q

Polarizations
- Stokes parameters S1, S2, S3

Measurements
- IQ RF (Gain) Imbalance, IQ Quadrature Error, I Bias Error, Q Bias Error, IQ Skew,
- I-Q Offset (I and Q Bias Error), Magnitude Error, EVM@Symbol (% RMS),
- EVM Phase Error@Symbol, Q-Factor, BER Estimate, State of Polarization,
- PMD, XY Skew, PDL, True BER counting

TRUE BER Counting
- Supports a variety of data multiplexing options
- Includes multiple gray codes, binary codes and customizable symbol to binary encoding
- Support for PRBS patterns $2^{1-1}, 2^{5-1}, 2^{11-1}$, $2^{15-1}, 2^{23-1}, 2^{31-1}$ and user-defined patterns

Digital Signal Processing
- Pre-processor: Filters, Custom
- Dispersion Compensation: Frequency Domain, FIR, Custom
- Polarization De-Multiplexing: CMA, MMA, Custom
- Carrier Recovery: Decision directed, Viterbi & Viterbi, Custom
- Filter: Predefined profiles, Custom
- Equalizer: Adaptive, Custom

Supported Modulation Formats
- Single and dual-polarizations of the following:
 - BPSK, QPSK, 8PSK, BPSK-RZ, QPSK-RZ, DQPSK-RZ, 8-QAM, 16-QAM, 32-QAM, 64-QAM, 8-QAM-RZ, 16-QAM-RZ, 32-QAM-RZ, 64-QAM-RZ, OOK, OOK-RZ, laser only, Arbitrary user-defined formats

Physical Characteristics

Dimensions (HWD)
- IQS25/IQS42/IQS70 - 3.82”H x 17.32”W x 15.35”D (97 mm x 440 mm x 390 mm)
- LabMaster MCM-Zi-A Master Control Module - 10.9”H x 18.2”W x 15.6”D (277 x 462 x 396 mm)
- LabMaster 10-xxZi-A Acquisition Module - 8.0”H x 18.2”W x 26”D (202 x 462 x 660 mm)

Weight
- IQS25/IQS42/IQS70 - 9.2 kg (20.3 lbs)
- LabMaster MCM-Zi-A Master Control Module - 53 lbs. (24 kg)
- LabMaster 10-xxZi-A Acquisition Module - 47 lbs. (21.4 kg)
- LabMaster 10-xxZi-A Acquisition Module - 58 lbs. (26.3 kg)
- LabMaster MCM-Zi-A Master Control Module - 47 lbs. (21.4 kg)

Power Supply
- IQS25/IQS42/IQS70 - ~100 - 240 V; 50/60 Hz; 20W Max
- LabMaster MCM-Zi-A Master Control Module - 1225 W / 1225 VA
- LabMaster 10-xxZi-A Acquisition Module - 1275 W / 1275 VA

Operating Temperature Range
- 5°C to 45°C (41 °F to 113 °F)

Storage Temperature Range
- -40°C to 70°C (-40 °F to 158 °F)

Note: All specifications subject to change without notice
Ordering Information

Product Description

<table>
<thead>
<tr>
<th>Product Description</th>
<th>Product Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>IQS Series Coherent Optical Receivers</td>
<td></td>
</tr>
<tr>
<td>Dual-pol Coherent Optical Receiver, 25 GHz (Includes one license for OpticalLinQ software)</td>
<td>IQS25</td>
</tr>
<tr>
<td>Dual-pol Coherent Optical Receiver, 42 GHz (Includes one license for OpticalLinQ software)</td>
<td>IQS42</td>
</tr>
<tr>
<td>Dual-pol Coherent Optical Receiver, 70 GHz (Includes one license for OpticalLinQ software)</td>
<td>IQS70</td>
</tr>
<tr>
<td>Matched set of standard bandwidth rigid cables for IQS receiver (for 20 - 36 GHz configurations)</td>
<td>IQSCABLES-SBW</td>
</tr>
<tr>
<td>Matched set of high bandwidth rigid cables for IQS receiver (for 50 - 65 GHz configurations)</td>
<td>IQSCABLES-HBW</td>
</tr>
<tr>
<td>LabMaster 10Zi-A Series Master Control Modules</td>
<td></td>
</tr>
<tr>
<td>LabMaster Control Module with 15.3” WXGA Color Display</td>
<td>LabMaster MCM-Zi-A</td>
</tr>
<tr>
<td>SDA Master Control Module with 15.3” WXGA Color Display (provides additional standard software and 64 Mpt/Ch memory)</td>
<td>SDA MCM-Zi-A</td>
</tr>
<tr>
<td>LabMaster 10Zi-A Series Acquisition Modules</td>
<td></td>
</tr>
<tr>
<td>20 GHz, 80 GS/s, 4 Ch, 32 Mpts/Ch LabMaster</td>
<td>LabMaster 10-20Zi-A</td>
</tr>
<tr>
<td>25 GHz, 80 GS/s, 4 Ch, 32 Mpts/Ch LabMaster</td>
<td>LabMaster 10-25Zi-A</td>
</tr>
<tr>
<td>30 GHz, 80 GS/s, 4 Ch, 32 Mpts/Ch LabMaster</td>
<td>LabMaster 10-30Zi-A</td>
</tr>
<tr>
<td>36 GHz, 80 GS/s, 4 Ch, 32 Mpts/Ch LabMaster</td>
<td>LabMaster 10-36Zi-A</td>
</tr>
<tr>
<td>50 GHz, 160 GS/s, 2 Ch, 64 Mpts/Ch LabMaster</td>
<td>LabMaster 10-50Zi-A</td>
</tr>
<tr>
<td>59 GHz, 160 GS/s, 2 Ch, 64 Mpts/Ch LabMaster</td>
<td>LabMaster 10-59Zi-A</td>
</tr>
<tr>
<td>65 GHz, 160 GS/s, 2 Ch, 64 Mpts/Ch LabMaster</td>
<td>LabMaster 10-65Zi-A</td>
</tr>
<tr>
<td>100 GHz, 240 GS/s, 1 Ch, 96 Mpts/Ch LabMaster</td>
<td>LabMaster 10-100Zi-A</td>
</tr>
<tr>
<td>Standard Accessories</td>
<td></td>
</tr>
<tr>
<td>Included with IQS receiver</td>
<td></td>
</tr>
<tr>
<td>USB cable, std A to std B, qty 1</td>
<td></td>
</tr>
<tr>
<td>PM FC/PC patch cord, 15cm, qty 1</td>
<td></td>
</tr>
<tr>
<td>IEC mains cable for destination country</td>
<td></td>
</tr>
<tr>
<td>Operator’s Manual</td>
<td></td>
</tr>
<tr>
<td>Registration card</td>
<td></td>
</tr>
<tr>
<td>Calibration certificate</td>
<td></td>
</tr>
<tr>
<td>Included with LabMaster MCM-Zi Standard Configuration</td>
<td></td>
</tr>
<tr>
<td>Power Cable for the Destination Country</td>
<td></td>
</tr>
<tr>
<td>Optical 3-button Wheel Mouse USB 2.0</td>
<td></td>
</tr>
<tr>
<td>Printed Getting Started Manual, Anti-virus Software (Trial Version)</td>
<td></td>
</tr>
<tr>
<td>Microsoft Windows 7 License</td>
<td></td>
</tr>
<tr>
<td>Commercial NIST Traceable Calibration with Certificate, 3-year Warranty</td>
<td></td>
</tr>
<tr>
<td>Included with LabMaster 10-xxZi-A Standard Configuration</td>
<td></td>
</tr>
<tr>
<td>2.92mm Connector Saver: Qty. 4</td>
<td></td>
</tr>
<tr>
<td>1.85mm Barrel Adapter: Qty. 2 (50-65 GHz units only)</td>
<td></td>
</tr>
<tr>
<td>PCIe x 8 cable, 2m long</td>
<td></td>
</tr>
<tr>
<td>PCIe x 4 cable, 2m long</td>
<td></td>
</tr>
<tr>
<td>Power Cable for the Destination Country</td>
<td></td>
</tr>
<tr>
<td>ChannelSync 10 GHz clock cable, 2m long</td>
<td></td>
</tr>
<tr>
<td>Commercial NIST Traceable Calibration with Certificate, 3-year Warranty</td>
<td></td>
</tr>
</tbody>
</table>

Recommended Configurations (see page 3)

Dual-pol signals up to 28 Gbaud

LabMaster Control Module with 15.3” WXGA Color Display | LabMaster MCM-Zi-A |
Dual-pol Coherent Optical Receiver, 25 GHz (Includes one license for OpticalLinQ software)	IQS25
25 GHz, 80 GS/s, 4 Ch, 32 Mpts/Ch LabMaster	LabMaster 10-25Zi-A
Matched set of standard bandwidth rigid cables for IQS receiver	IQSCABLES-SBW

Dual-pol signals up to 32 Gbaud

LabMaster Control Module with 15.3” WXGA Color Display | LabMaster MCM-Zi-A |
Dual-pol Coherent Optical Receiver, 42 GHz (Includes one license for OpticalLinQ software)	IQS42
36 GHz, 80 GS/s, 4 Ch, 32 Mpts/Ch LabMaster	LabMaster 10-36Zi-A
Matched set of standard bandwidth rigid cables for IQS receiver	IQSCABLES-SBW
Options and Accessories for IQS Series Receivers

Internal LO options
- C+L band laser option for IQS25, IQS42 or IQS70: IQS-CL

Rackmount accessories
- Rackmount kit for IQS Receiver: IQS-RACKMOUNT

Standalone Optical LinQ software
- Coherent optical analysis software for WaveMaster 8Zi series oscilloscopes: WM8ZI-OPTICAL-LINQ
- Coherent optical analysis software for LabMaster 9Zi series oscilloscopes: LM9ZI-OPTICAL-LINQ
- Coherent optical analysis software for LabMaster 10Zi series oscilloscopes: LM10ZI-OPTICAL-LINQ

Selected Options and Accessories for LabMaster 10Zi-A Series Oscilloscopes

Memory Options
- 64 Mpts/Ch Memory Option for LabMaster 10: LM10Zi-M-64
- 128 Mpts/Ch Memory Option for LabMaster 10: LM10Zi-M-128
- 256 Mpts/Ch Memory Option for LabMaster 10: LM10Zi-M-256
- 512 Mpts/Ch Memory Option for LabMaster 10: LM10Zi-M-512

CPU, Computer and Other Hardware Options for LabMaster MCM-Zi-A Master Control Module
- Additional 500 GB Hard Drive for MCM-Zi-A: MCM-Zi-500GB-RHD-02
- 48 GB RAM Upgrade for MCM-Zi-A: MCM-Zi-32-UPG-48GBRAM
- 96 GB RAM Upgrade for MCM-Zi-A: MCM-Zi-32-UPG-96GBRAM
- 192 GB RAM Upgrade for MCM-Zi-A: MCM-Zi-32-UPG-192GBRAM
- GPIB Option for LabMaster MCM-Zi-A: GPIB-3

Selected Options and Accessories for LabMaster 10Zi-A Series Oscilloscopes (Cont'd)

High Speed Output Accessories
- High-speed PCIe Gen 1 x4 Digitizer Output: LSIB-2
- PCI Express x1 Host Interface for Laptop Express Card Slot: LSIB-HOSTCARD
- PCI Express x1 Host Interface Board for Desktop PC: LSIB-HOSTBOARD
- PCI Express x4 3-meter Cable with x4 Cable Connectors Included: LSIB-CABLE-3M
- PCI Express x4 7-meter Cable with x4 Cable Connectors Included: LSIB-CABLE-7M

Miscellaneous
- LabMaster 10 Zi Acquisition Module Rackmount Kit: LM10Zi-ACQMOD-RACKMOUNT
- LabMaster MCM-Zi Softcase: MCM-Zi-SOFTCASE
- LabMaster 10 Zi Acquisition Module Soft Carrying Case: LM10Zi-ACQMOD-SOFTCASE

General Purpose and Application Specific Software Options
- Multi-Lane SDA LinQ Framework, including Eye, Jitter, Noise, Crosstalk Measurements, with EyeDrII and VirtualProbe: LM10Zi-SDAIII-CompleteLinQ
- Single-Lane Serial Data Analysis Framework, Eye and Jitter Measurements (Included as standard with SDA MCM-Zi-A): LM10Zi-SDAII
- PAM4 eye, jitter and noise analysis: LM10Zi-PAM4
- Spectrum Analyzer and Advanced FFT Option: LM10Zi-SPECTRUM
- Digital Filter Software Package: LM10Zi-DFP2
- VectorLinQ VSA Software Option: LM10Zi-VECTORLINQ
- VectorLinQ Advanced VSA Software Option: LM10Zi-VECTORLINQ-ADV

Note: A wide variety of additional software options and probes are also available as part of the LabMaster 10Zi-A oscilloscope product series. Please refer to the LabMaster 10Zi-A datasheet, available at teledynelecroy.com, for more details.

Customer Service

Teledyne LeCroy oscilloscopes and probes are designed, built, and tested to ensure high reliability. In the unlikely event you experience difficulties, our digital oscilloscopes are fully warranted for three years and our probes are warranted for one year. This warranty includes:
- No charge for return shipping
- Long-term 7-year support
- Upgrade to latest software at no charge

* 7-year support applies to oscilloscopes and probes only. Due to the rapidly-evolving nature of the optical components used in the IQS42 and IQS70 Coherent Optical Receivers, long-term support for these products will be provided for three years after end-of-life notification of the product.