CHAPTER 1: ABOUT AUTOMATION

OVERVIEW OF AUTOMATION

- Standards ... 1-2
- Compatibility with Other LeCroy Scopes .. 1-2
- Automation and IEEE 488.2 Remote Control – How Do They Compare? 1-2

*ActiveDSO is an Active-X based driver for LeCroy oscilloscopes .. 1-3

General Characteristics

- INTRODUCTION TO THE X-STREAM BROWSER .. 1-4
- STEP-BY-STEP INTRODUCTION TO AUTOMATION USING VBScript 1-5

WHERE IS AUTOMATION USED?

- SETUPS (PANEL FILES) ARE PROGRAMS! .. 1-7
- CUSTOM MATH AND MEASUREMENTS .. 1-8

*CustomDSO .. 1-8

- Control from External Applications .. 1-9
 - From Visual Basic .. 1-10
 - From MATLAB ... 1-10
 - From MS Office (Excel) ... 1-11

CONTROL VARIABLES EXPLAINED

- ACCESSING WAVEFORM/MEASUREMENT RESULTS .. 1-14

*Waveforms ... 1-14
*Measurements ... 1-14
*Result Status ... 1-16

SYNCHRONIZATION

- GOOD PRACTICES ... 1-19

EXAMPLES

- EARLY AND LATE BINDING .. 1-22

*VBS REMOTE COMMAND ... 1-23

*X-STREAM DSO OBJECTS .. 1-24
CHAPTER 2: ABOUT RESULTS

ABOUT RESULTS ... 2-1

INTRODUCTION ... 2-2
 Digital .. 2-2
 Histogram ... 2-2
 Param ... 2-2
 Persist ... 2-3
 Table ... 2-3

OVERVIEW OF RESULTS .. 2-4
 Variable Types ... 2-4
 Use of Variants ... 2-4
 Using Variables to Reference Objects within the XStream Hierarchy .. 2-4

DESCRIPTION OF RESULT PROPERTIES ... 2-6
 Base .. 2-6
 BinPopulations ... 2-6
 Bins .. 2-6
 BinWidth .. 2-7
 BusName ... 2-7
 CellType ... 2-7
 CellValue ... 2-7
 Columns ... 2-8
 dataArray ... 2-8
 XY Interface: .. 2-8
 Waveform Interface: .. 2-9
 Persist Interface: ... 2-10
 Digital Interface: ... 2-11
 ExtendedStatus .. 2-12
 FirstEventTime ... 2-12
 FirstPopulatedBin ... 2-13
 HorizontalFrameStart ... 2-13
 HorizontalFrameStop .. 2-13
 HorizontalOffset .. 2-13
 HorizontalPerColumn .. 2-14
 HorizontalPerStep .. 2-14
 HorizontalResolution .. 2-14
 HorizontalUnits ... 2-15
 HorizontalVarianceArray ... 2-15
 HorizontalVariances ... 2-15
 IndexOfFirstSampleInFrame .. 2-15
 LastEventTime ... 2-15
 LastPopulatedBin .. 2-16
 Levels .. 2-16
 LineAliasName ... 2-16
 LineName ... 2-16
 Lines .. 2-16
 Max ... 2-16
 MaxPopulation ... 2-17
 MaxPopulationBin .. 2-17
 MaxPopulationInRectangle .. 2-17
 Mean ... 2-18
 Min ... 2-18
TABLE OF CONTENTS

NumFrameDimensions ... 2-18
NumSamplesInFrame .. 2-18
OffsetAtLeftEdge ... 2-18
Peaks ... 2-19
PeakInfo .. 2-19
PopulationInside .. 2-20
PopulationOfRectangle .. 2-20
PopulationOver ... 2-20
PopulationUnder ... 2-21
RMS ... 2-21
Rows .. 2-21
Samples .. 2-21
Sdev .. 2-21
Status .. 2-22
StatusDescription .. 2-24
Sweeps ... 2-24
Top .. 2-24
UniformInterval ... 2-24
UpdateTime ... 2-25
Value .. 2-25
ValueArray ... 2-25
VerticalFrameStart .. 2-26
VerticalFrameStop .. 2-27
VerticalMaxPossible ... 2-27
VerticalMinPossible ... 2-27
VerticalOffset .. 2-27
VerticalPerRow ... 2-27
VerticalPerStep ... 2-27
VerticalResolution .. 2-28
VerticalUnits ... 2-28
XFrameStart ... 2-28
XFrameStop ... 2-28
XMaxPossible .. 2-29
XMinPossible .. 2-29
XOffset .. 2-29
XPerStep ... 2-29
XResolution .. 2-29
XUnits .. 2-30
YFrameStart ... 2-30
YFrameStop ... 2-30
YMaxPossible .. 2-30
YMinPossible .. 2-30
YOffset ... 2-30
YPerStep ... 2-30
YResolution .. 2-30
YUnits ... 2-31
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>app</td>
<td>3-1</td>
</tr>
<tr>
<td>app.Acquisition</td>
<td>3-8</td>
</tr>
<tr>
<td>app.Acquisition.Channels</td>
<td>3-10</td>
</tr>
<tr>
<td>app.Acquisition.Cx</td>
<td>3-11</td>
</tr>
<tr>
<td>app.Acquisition.Cx.Out.Result</td>
<td>3-21</td>
</tr>
<tr>
<td>app.Acquisition.Horizontal</td>
<td>3-21</td>
</tr>
<tr>
<td>app.Acquisition.PodsCalibrationWizard</td>
<td>3-28</td>
</tr>
<tr>
<td>app.Acquisition.Trigger</td>
<td>3-29</td>
</tr>
<tr>
<td>app.Cursors</td>
<td>3-30</td>
</tr>
<tr>
<td>app.Display</td>
<td>3-32</td>
</tr>
<tr>
<td>app.HardCopy</td>
<td>3-44</td>
</tr>
<tr>
<td>app.LabNotebook</td>
<td>3-48</td>
</tr>
<tr>
<td>app.Math</td>
<td>3-55</td>
</tr>
<tr>
<td>app.Math.Functions</td>
<td>3-56</td>
</tr>
<tr>
<td>app.Math.Fx</td>
<td>3-56</td>
</tr>
<tr>
<td>app.Math.Fx.Operator1Setup</td>
<td>3-63</td>
</tr>
<tr>
<td>app.Math.Fx.Zoom</td>
<td>3-64</td>
</tr>
<tr>
<td>app.Math.XY</td>
<td>3-65</td>
</tr>
<tr>
<td>app.Math.XY.Out.Result</td>
<td>3-69</td>
</tr>
<tr>
<td>app.Measure</td>
<td>3-69</td>
</tr>
<tr>
<td>app.Measure.Measure</td>
<td>3-75</td>
</tr>
<tr>
<td>app.Measure.Px</td>
<td>3-75</td>
</tr>
<tr>
<td>app.Measure.Px.histo.Result</td>
<td>3-81</td>
</tr>
<tr>
<td>app.Measure.Px.last.Result</td>
<td>3-81</td>
</tr>
<tr>
<td>app.Measure.Px.max.Result</td>
<td>3-81</td>
</tr>
<tr>
<td>app.Measure.Px.mean.Result</td>
<td>3-81</td>
</tr>
<tr>
<td>app.Measure.Px.min.Result</td>
<td>3-81</td>
</tr>
<tr>
<td>app.Measure.Px.num.Result</td>
<td>3-82</td>
</tr>
<tr>
<td>app.Measure.Px.Operator</td>
<td>3-82</td>
</tr>
<tr>
<td>app.Measure.Px.Out.Result</td>
<td>3-82</td>
</tr>
<tr>
<td>app.Measure.Px.sdev.Result</td>
<td>3-82</td>
</tr>
<tr>
<td>app.Measure.Px.Statistics</td>
<td>3-82</td>
</tr>
<tr>
<td>app.Memory</td>
<td>3-82</td>
</tr>
<tr>
<td>app.Memory.Memories</td>
<td>3-83</td>
</tr>
<tr>
<td>app.Memory.Mx</td>
<td>3-83</td>
</tr>
<tr>
<td>app.Memory.Mx.Out.Result</td>
<td>3-86</td>
</tr>
<tr>
<td>app.Memory.Mx.Zoom</td>
<td>3-86</td>
</tr>
<tr>
<td>Function</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>app.PassFail</td>
<td>3-88</td>
</tr>
<tr>
<td>app.PassFail.LastPass.Result</td>
<td>3-91</td>
</tr>
<tr>
<td>app.PassFail.NumPassed.Result</td>
<td>3-91</td>
</tr>
<tr>
<td>app.PassFail.Qx</td>
<td>3-91</td>
</tr>
<tr>
<td>app.PassFail.Qx.Out.Result</td>
<td>3-93</td>
</tr>
<tr>
<td>app.PassFail.Rate.Result</td>
<td>3-94</td>
</tr>
<tr>
<td>app.Preferences</td>
<td>3-94</td>
</tr>
<tr>
<td>app.Preferences.EMail</td>
<td>3-96</td>
</tr>
<tr>
<td>app.SaveRecall</td>
<td>3-97</td>
</tr>
<tr>
<td>app.SaveRecall.Setup</td>
<td>3-97</td>
</tr>
<tr>
<td>app.SaveRecall.Utilities</td>
<td>3-103</td>
</tr>
<tr>
<td>app.SaveRecall.Waveform</td>
<td>3-104</td>
</tr>
<tr>
<td>app.SystemControl</td>
<td>3-109</td>
</tr>
<tr>
<td>app.TDR</td>
<td>3-109</td>
</tr>
<tr>
<td>app.TDR.TDRN</td>
<td>3-111</td>
</tr>
<tr>
<td>app.TDR.TDRN.Out.Result</td>
<td>3-112</td>
</tr>
<tr>
<td>app.TDR.TDRN.Zoom</td>
<td>3-112</td>
</tr>
<tr>
<td>app.Utility.DateTimeSetup</td>
<td>3-114</td>
</tr>
<tr>
<td>app.Utility.Options</td>
<td>3-117</td>
</tr>
<tr>
<td>app.Utility.Remote</td>
<td>3-118</td>
</tr>
<tr>
<td>app.WaveScan</td>
<td>3-119</td>
</tr>
<tr>
<td>app.WaveScan.ScanDecode</td>
<td>3-121</td>
</tr>
<tr>
<td>app.WaveScan.ScanDecode.Out.Result</td>
<td>3-122</td>
</tr>
<tr>
<td>app.WaveScan.ScanHisto</td>
<td>3-122</td>
</tr>
<tr>
<td>app.WaveScan.ScanHisto.Histogram</td>
<td>3-125</td>
</tr>
<tr>
<td>app.WaveScan.ScanHisto.Out.Result</td>
<td>3-126</td>
</tr>
<tr>
<td>app.WaveScan.ScanHisto.Zoom</td>
<td>3-127</td>
</tr>
<tr>
<td>app.WaveScan.ScanOverlay</td>
<td>3-128</td>
</tr>
<tr>
<td>app.WaveScan.ScanOverlay.Out.Result</td>
<td>3-130</td>
</tr>
<tr>
<td>app.Zoom</td>
<td>3-130</td>
</tr>
<tr>
<td>app.Zoom.Zx</td>
<td>3-132</td>
</tr>
<tr>
<td>app.Zoom.Zx.Zoom</td>
<td>3-136</td>
</tr>
<tr>
<td>Automation Manual</td>
<td>Processor Reference Table of Contents</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>Average</td>
<td>4-1</td>
</tr>
<tr>
<td>Derivative</td>
<td>4-2</td>
</tr>
<tr>
<td>Deskew</td>
<td>4-3</td>
</tr>
<tr>
<td>EnhancedResolution</td>
<td>4-3</td>
</tr>
<tr>
<td>Envelope</td>
<td>4-4</td>
</tr>
<tr>
<td>FFT</td>
<td>4-4</td>
</tr>
<tr>
<td>Floor</td>
<td>4-6</td>
</tr>
<tr>
<td>Histogram</td>
<td>4-7</td>
</tr>
<tr>
<td>Integral</td>
<td>4-9</td>
</tr>
<tr>
<td>MATLABWaveform</td>
<td>4-10</td>
</tr>
<tr>
<td>PersistenceHistogram</td>
<td>4-11</td>
</tr>
<tr>
<td>Rescale</td>
<td>4-12</td>
</tr>
<tr>
<td>Roof</td>
<td>4-13</td>
</tr>
<tr>
<td>SinXOverX</td>
<td>4-14</td>
</tr>
<tr>
<td>Trend</td>
<td>4-14</td>
</tr>
<tr>
<td>ParamDifference</td>
<td>4-16</td>
</tr>
<tr>
<td>ParamInvert</td>
<td>4-16</td>
</tr>
<tr>
<td>ParamProduct</td>
<td>4-16</td>
</tr>
<tr>
<td>ParamRatio</td>
<td>4-16</td>
</tr>
<tr>
<td>ParamRescale</td>
<td>4-16</td>
</tr>
<tr>
<td>ParamSum</td>
<td>4-16</td>
</tr>
<tr>
<td>Amplitude</td>
<td>4-17</td>
</tr>
<tr>
<td>Area</td>
<td>4-17</td>
</tr>
<tr>
<td>Base</td>
<td>4-17</td>
</tr>
<tr>
<td>DeltaTimeAtLevel</td>
<td>4-17</td>
</tr>
<tr>
<td>ExtinctionRatio</td>
<td>4-20</td>
</tr>
<tr>
<td>EyeAmplitude</td>
<td>4-21</td>
</tr>
<tr>
<td>EyeBER</td>
<td>4-21</td>
</tr>
<tr>
<td>EyeCrossing</td>
<td>4-22</td>
</tr>
<tr>
<td>EyeFallTime</td>
<td>4-22</td>
</tr>
<tr>
<td>EyeHeight</td>
<td>4-23</td>
</tr>
<tr>
<td>EyeMean</td>
<td>4-24</td>
</tr>
<tr>
<td>EyeOneLevel</td>
<td>4-24</td>
</tr>
<tr>
<td>EyeOpeningFactor</td>
<td>4-25</td>
</tr>
<tr>
<td>EyeOvershootNegative</td>
<td>4-25</td>
</tr>
<tr>
<td>EyeOvershootPositive</td>
<td>4-26</td>
</tr>
<tr>
<td>EyePpkPkNoise</td>
<td>4-26</td>
</tr>
<tr>
<td>EyeQFactor</td>
<td>4-27</td>
</tr>
<tr>
<td>Metric</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>EyeRiseTime</td>
<td>4-27</td>
</tr>
<tr>
<td>EyeSDEVNoise</td>
<td>4-28</td>
</tr>
<tr>
<td>EyeSignalToNoise</td>
<td>4-29</td>
</tr>
<tr>
<td>EyeSuppressionRatio</td>
<td>4-29</td>
</tr>
<tr>
<td>EyeZeroLevel</td>
<td>4-30</td>
</tr>
<tr>
<td>FallAtLevel</td>
<td>4-30</td>
</tr>
<tr>
<td>FullWidthAtXX</td>
<td>4-31</td>
</tr>
<tr>
<td>LevelAtX</td>
<td>4-32</td>
</tr>
<tr>
<td>MATLABParameter</td>
<td>4-32</td>
</tr>
<tr>
<td>Maximum</td>
<td>4-33</td>
</tr>
<tr>
<td>Mean</td>
<td>4-33</td>
</tr>
<tr>
<td>Median</td>
<td>4-34</td>
</tr>
<tr>
<td>Minimum</td>
<td>4-34</td>
</tr>
<tr>
<td>npoints</td>
<td>4-34</td>
</tr>
<tr>
<td>OvershootNegative</td>
<td>4-35</td>
</tr>
<tr>
<td>OvershootPositive</td>
<td>4-35</td>
</tr>
<tr>
<td>PeakToPeak</td>
<td>4-35</td>
</tr>
<tr>
<td>Percentile</td>
<td>4-35</td>
</tr>
<tr>
<td>PersistDCD</td>
<td>4-36</td>
</tr>
<tr>
<td>Phase</td>
<td>4-37</td>
</tr>
<tr>
<td>PopulationAtX</td>
<td>4-40</td>
</tr>
<tr>
<td>Range</td>
<td>4-41</td>
</tr>
<tr>
<td>RiseAtLevel</td>
<td>4-43</td>
</tr>
<tr>
<td>RootMeanSquare</td>
<td>4-44</td>
</tr>
<tr>
<td>StandardDeviation</td>
<td>4-44</td>
</tr>
<tr>
<td>TDRCapInd</td>
<td>4-45</td>
</tr>
<tr>
<td>TIE</td>
<td>4-46</td>
</tr>
<tr>
<td>TimeAtLevel</td>
<td>4-50</td>
</tr>
<tr>
<td>Top</td>
<td>4-51</td>
</tr>
<tr>
<td>XAtMaximum</td>
<td>4-52</td>
</tr>
<tr>
<td>XAtMinimum</td>
<td>4-52</td>
</tr>
<tr>
<td>XAtPeak</td>
<td>4-53</td>
</tr>
</tbody>
</table>
APPENDIX A: DCOM

Prepare the PC to Permit DCOM Connections to the Oscilloscope ... A-1
 Installation on Windows XP or Vista .. A-2
 Installation on Windows 2000 SP4 ... A-3
Oscilloscope Preparation on Windows XP or Vista .. A-4
 Creating a System Restore Point on Windows XP or Vista .. A-4
 Opening the Firewall on Windows XP or Vista .. A-4
 Creating a User Account on Oscilloscopes Running Windows XP or Vista ... A-5
DCOM System Configuration on Windows XP or Vista ... A-6
Oscilloscope Preparation on Windows 2000 .. A-11
 Creating a User Account on Oscilloscopes Running Windows 2000 .. A-11
DCOM System Configuration on Windows 2000 .. A-12
Oscilloscope Preparation on Windows Embedded .. A-16
 Creating a User Account on Oscilloscopes Running Windows Embedded .. A-16
DCOM System Configuration on Windows Embedded (on the Oscilloscope) .. A-16
Testing the DCOM Connection from the PC ... A-20

APPENDIX B: GLOSSARY

ActiveX ... B-1
Automation ... B-1
Automation client ... B-1
Automation object .. B-1
Automation server .. B-1
COM (COMPONENT OBJECT MODEL) ... B-1
DCOM (DISTRIBUTED COMPONENT OBJECT MODEL) ... B-1
EARLY BINDING .. B-1
LATE BINDING .. B-1
DISPATCH INTERFACES (dispinterface) ... B-1
About this Manual

This manual is a reference guide to the “Automation” capabilities of LeCroy’s X-Stream™ DSOs. The manual includes a complete list of all instrument controls that are available to a controlling application. In contrast to previously available remote control possibilities for LeCroy instruments, Automation enables the controlling application to run on the instrument itself.

- Part One, “About Automation,” covers the principles of control via Automation and offers practical examples. It also presents the overall hierarchy of controls accessible via Automation.
- Part Two, “Control Reference,” presents each of the controls in detail, including examples of use in many cases.
- Part Three, “Math/Measure Control Reference,” presents controls available in each of the multitude of the Math/Measure ‘processors’ available in X-Stream DSOs.
ABOUT AUTOMATION

This section presents an overview of the Automation capabilities of X-Stream DSOs along with an overview of the technology itself.

CHAPTER ONE: Overview

In this chapter learn about

- Microsoft’s COM-based “OLE Automation”
- How to create simple applications in Visual Basic to control the instrument
- How to use X-Stream Browser to interactively control the instrument
ABOUT AUTOMATION

OVERVIEW OF AUTOMATION

In addition to supporting the familiar ASCII-based remote commands that have been used to control all LeCroy DSOs for many years, all of the Windows-based “X-Stream” instruments fully support control by Automation interfaces based on Microsoft’s Component Object Model (COM). Using COM, the controlling application can run directly on the instrument without requiring an external controller; or, alternatively, it can run using Microsoft’s distributed COM standard (DCOM) on a networked computer.

Standards

Automation (formerly referred to as “OLE Automation”) is a Microsoft technology that is primarily used to enable cross-application macro programming. It is based upon the Component Object Model (COM), which is similar in nature to CORBA, which is more commonly found in the UNIX world.

An application that “exposes Automation Objects” is referred to as an “Automation Server.” Automation Objects expose “Automation Interfaces” to the controlling “Automation Client.” The oscilloscope application on LeCroy Windows-based oscilloscopes is an Automation Server, and can be controlled by Automation Clients. This manual describes the Automation objects and interfaces exposed by the oscilloscope application in detail.

It is important to note that Automation itself is not language dependent; it can be used from any programming language that supports COM. This manual, however, concentrates mainly on the use of Automation from the Visual Basic Script (VBScript) language for several reasons, including the fact that it is one of the easiest to use. Also, it is the language that X-Stream instruments use for setup files (more on this later). In addition, the VBScript interpreter is installed by default on all X-Stream instruments and, therefore, is available without your having to purchase any additional software.

Compatibility with Other LeCroy Scopes

Throughout LeCroy’s history, we have striven to maximize compatibility, and this policy remains in force. However, due to the fact that the underlying technologies used by Automation require the 32-bit Windows operating system, and that this system is available only on our X-Stream instruments, Automation is not available on the older LeCroy oscilloscope families.

Automation and IEEE 488.2 Remote Control – How Do They Compare?

Automation does not replace the IEEE 488.2-based remote command set, which is also supported by X-Stream instruments (and will continue to be). Instead, it augments it and allows a new class of application to be created that can run on the DSO itself.

Automation, however, can be considered as the “Native Language,” or “Mother Tongue” of X-Stream instruments. All of the instrument’s controls and features are available to the Automation Client.

Automation controls generally are more granular than 488.2 remote commands. That is, many 488.2 remote commands set more than one control at the same time; whereas, via Automation, this is not the case.
The following table summarizes the differences between the two remote control possibilities:

<table>
<thead>
<tr>
<th></th>
<th>IEEE 488.2 Control</th>
<th>Automation Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Transport</td>
<td>GPIB, TCP/IP over Ethernet</td>
<td>Inter-process using COM, inter-PC using DCOM (TCP/IP)</td>
</tr>
<tr>
<td>Textual parsing of instrument responses required</td>
<td>Yes. All instrument responses need ‘parsing’ to extract useful information.</td>
<td>No. Each element in the Automation hierarchy appears as a “variable” to the Automation client.</td>
</tr>
<tr>
<td>Compatibility with previous LeCroy DSOs</td>
<td>Very good. In most cases remote control applications written for older DSOs will work without modification.</td>
<td>None. Automation is a new standard first introduced with LeCroy’s X-Stream DSOs.</td>
</tr>
<tr>
<td>Ability to control the oscilloscope application from “inside the box”*</td>
<td>Yes, by using the TCP/IP (VICP) protocol to talk to the “local host”</td>
<td>Yes, natively</td>
</tr>
<tr>
<td>Ease of Use</td>
<td>Not trivial. It’s easier using a tool such as ActiveDSO* that hides some of the complexities.</td>
<td>Very easy to use from scripting languages and office productivity tools</td>
</tr>
<tr>
<td>Format of Waveform results</td>
<td>Binary or ASCII. Both require parsing before use.</td>
<td>Waveforms are presented as arrays of floating point values.</td>
</tr>
<tr>
<td>Control from MS Office suite</td>
<td>Possible via ActiveDSO* utility</td>
<td>Yes, natively (see examples later in this manual)</td>
</tr>
</tbody>
</table>

* ActiveDSO is a Active-X based driver for LeCroy oscilloscopes

General Characteristics

- When an application is running locally on the instrument and requests a connection to the DSO via Automation (for example, by using `CreateObject(“LeCroy.XStreamDSO”)` from Visual Basic), one of two things will happen. If the X-Stream DSO application is already running, the object returned will be a “pointer” to the running application. If the DSO application is not running, it will be started. It is not possible to run two simultaneous instances of the X-Stream DSO application.

- More than one simultaneous connection to the instrument via Automation will be accepted, but simultaneous connections are not recommended.

- When the final client has been disconnected from the instrument (server), the X-Stream DSO application will remain running and will accept further client connections.

- Operations that cause Modal Dialogs to appear in the instrument’s display will, by default, disrupt access from Automation. This behavior can be changed using the `app.SystemControl.ModalDialogTimeout` and `app.SystemControl.EnableMessageBox` controls. Refer to the description of each of these controls in the reference section for more information.

- The instrument application can be minimized in order to allow the controlling application to take over the display and touch panel by means of the `app.Minimize` control. It can also be resized and repositioned on the display by means of the `app.Top`, `app.Left`, `app.Bottom`, `app.Right` controls.
INTRODUCTION TO THE X-STREAM BROWSER

The easiest way to get up and running with Automation, and also to visualize the “X-Stream Object Model” is to use the X-Stream browser tool, which is pre-installed on all instruments.

To launch the tool, first minimize the instrument application (File->Minimize), then double-click on the X-Stream Browser icon on the desktop:

To connect to the running DSO application, click the Connect toolbar icon:

Upon connection, the root of the object hierarchy is shown in a layout similar to that presented when a file system is browsed using Windows Explorer.

As a quick demonstration of how the X-Stream Browser can be used, open the Acquisition folder and then click on the C1 folder. Find the item VerScale (Volts/Div) in the right-hand window and right-click on it, then select the Set Value menu option. Use the Copy Path… option to easily copy to the control variable’s “path”.

Enter a new value for VerScale and click the Set this value button. Restore the DSO’s X-Stream window and note that the V/Div value for C1 should have changed to reflect the entered value.

Once you have clicked on a control variable, the status bar will display the Visual Basic code that references it:

```
app.Acquisition.C1.VerScale
```

Most of the “folders” in the tree hierarchy in X-Stream Browser are yellow; these correspond to Objects. The object hierarchy is tiered; for example, the Acquisition is comprised of a variety of objects, including C1, C2, Horizontal, etc. Some Folders are pink; these are Collections. The subfolders of collections are referenced by indexing the collection name with the subfolder name. Lastly, the “Results” folders, which are dark gray. Results folders are objects, but contain items that are slightly different in nature to items in other folders.

The items in the right-hand window are referred to as Control Variables. These are explained in further detail in the section “Control Variables Explained” later in this chapter.
STEP-BY-STEP AUTOMATION INTRODUCTIONS USING VBScript

This section of the manual presents a walk-through of how to create a simple remote control application, which will run on the instrument, from scratch. It doesn’t rely upon any 3rd-party development tools, since it uses Windows’ built-in text editor (Notepad) and the Visual Basic Script interpreter (VBScript), which is also installed on all instruments.

1. Use the File→Windowed menu option to place the DSO application into windowed mode. This allows the windows start-bar to be accessed.

2. Open Windows Notepad via Start->Programs->Accessories->Notepad
 a. Write the following text into the editor:

      ```vbscript
      Set app = CreateObject("LeCroy.XStreamDSO")
      app.AutoSetup
      app.Display.GridMode = "Quad"
      myVerScale = app.Acquisition.C1.VerScale
      MsgBox myVerScale
      ```

3. Save the file to drive D: and name it Exercise1.vbs. Leave Notepad open, we’ll need it again.

5. Navigate to drive D: and double-click on Exercise1.vbs.

6. That's it. If these steps were followed correctly, you should hear relays clicking while the scope performs an auto-setup operation and enters its quad-grid display mode.

So, what did this “program” actually do?

- The CreateObject statement.

  ```vbscript
  Set app = CreateObject("LeCroy.XStreamDSO")
  ```

 CreateObject is the Visual Basic function that creates an instance of a COM Server (a.k.a. ActiveX Control). The argument “LeCroy.XStreamDSO” refers to our DSO application. Once it has instantiated (connected to) our DSO application we need some kind of ‘handle’ (pointer) to it so that we can use it later to communicate with the instrument. **CreateObject** returns a handle to us, which we store in the app variable.

 NOTE: Only a single instance of the X-Stream DSO software can run on a system at one time. If the DSO software is already running when CreateObject is called, a handle to that running instance is returned. If the DSO software is not running, it will be started.

- The app.AutoSetup statement.

  ```vbscript
  app.AutoSetup
  ```

 Using the app handle, this line of code calls the AutoSetup method, which performs the same task as the front-panel Auto-Setup button. Documentation for this method can be found later in the reference section.
• The `app.Display.GridMode = "Quad"` statement.

\[
\text{app.Display.GridMode} = \text{"Quad"}
\]

Using the `app` handle, this line of code sets the `GridMode` control of the `Display` system to the value “Quad”. It’s important to note that the controls are arranged in a hierarchy, with each ‘level’ of the hierarchy delimited with a decimal point (.).

• The `myVerScale = app.Acquisition.C1.VerScale` statement.

\[
\text{myVerScale} = \text{app.Acquisition.C1.VerScale}
\]

Instead of setting the value of a control, this line of code retrieves the current value of a control, in this case the Vertical Scale (Volts/Div) of Channel 1. The value returned is stored within the variable `myVerScale`.

\[
\text{NOTE: In Visual Basic Script it is not necessary to "Dimension" variables before using them (for example, using statements like "Dim myVerScale as Double").}
\]

• The `MsgBox myVerScale` statement

\[
\text{MsgBox myVerScale}
\]

This line of code does not communicate with the scope at all, but calls the standard Visual Basic Script function `MsgBox`. This function displays a dialog containing the value of the variable following “MsgBox”. In our case the value of Channel 1’s vertical scale, and waits for the OK button to be clicked.

Documentation about the `MsgBox` function can be found in Microsoft’s Visual Basic Scripting documentation at www.microsoft.com/scripting.

Another point that should be mentioned here is something that is used extensively in Setup files created by the instrument: the ability to use “abbreviations” to simplify programs. Following is an example in which a shorthand method is used to replace some rather long-winded code. It is also important to note that this also enhances performance. For example, the “lookup” of the object `app.Acquisition.C1` occurs only once in the modified code, but three times in the original code.

Instead of:

\[
\begin{align*}
\text{app.Acquisition.C1.VerScale} &= 0.5 \\
\text{app.Acquisition.C1.VerOffset} &= 0.1 \\
\text{app.Acquisition.C1.Coupling} &= \text{"DC50"}
\end{align*}
\]

The following may be used:

\[
\begin{align*}
\text{set myChannel1 = app.Acquisition.C1} \\
\text{myChannel1.VerScale} &= 0.5 \\
\text{myChannel1.VerOffset} &= 0.1 \\
\text{myChannel1.Coupling} &= \text{"DC50"}
\end{align*}
\]
WHERE IS AUTOMATION USED?

Automation is used in several places in the X-Stream based instrument.

- Instrument Setups (Panel Files)
- Custom Math/Measurements
- CustomDSO, User Interface customization
- Control from external applications (COM/DCOM)

Each of these uses is described in more detail in the following sections.

SETUPS (PANEL FILES) ARE PROGRAMS!

Setup files, which are used to save and recall the state of the instrument between runs, are traditionally binary files with an internal structure that is neither documented nor obvious to the user.

In X-Stream DSOs, however, this is no longer the case. Setups are ASCII text files that contain a complete Visual Basic Script “program” that, when “executed,” will restore the instrument to a previously recorded state. In effect, each time a panel is saved, the instrument effectively writes you a program that, when executed, returns the instrument to the saved state.

Due to the fact that these setups are already programs, they are a great way to get started quickly with Automation. As an example, try saving a setup into a file and examine it using a text-editor, as follows:

1. Touch File in the menu bar, then Save Setup from the drop-down menu.
2. Touch the Browse button and specify drive D:\Setups as the location to save the .lss (LeCroy setup script) file. (This is the factory default directory for setup files)
3. Touch Save Now!
4. Minimize the application using the Minimize option from the File menu
5. Open Microsoft’s Notepad application from the Accessories program folder (Start→Programs→Accessories).
6. Open the file saved above. You will see a Visual Basic Script program that begins like this:

```
On Error Resume Next
set XStreamDSO = CreateObject("LeCroy.XStreamDSO")
XStreamDSO.RecallingSetup = True

' AladdinPersona ...
XStreamDSO.HideClock = False
XStreamDSO.TouchScreenEnable = True
```

Since the entire state of the instrument, including all controls for all installed software options, is saved, this panel may look fairly complex. But don’t let this fool you; the basic concept is, in fact, fairly simple.
ABOUT AUTOMATION

As a quick example of how setups can be used as the starting point for controlling applications, scroll down to the end of the file and add the following code (shown in bold-type) to the file.

```
' Place any custom VBScript code after this point
',
' Perform an Auto Setup
XStreamDSO.AutoSetup
```

When this setup is recalled, the complete state of the instrument will be restored, followed by an Auto-Setup operation.

Obviously this is a fairly trivial “application,” but it is easy to imagine how automated testing could be performed with the introduction of loops and conditional execution.

NOTE: Setup files stored by the instrument have file extension “.lss” (LeCroy Setup Script). These files are syntactically identical to Microsoft Visual Basic Script (VBScript) files, which have a “.vbs” extension.

TIP: A simple alternative to recalling the panel into the instrument is to execute it, either by double-clicking on the .lss file in Windows Explorer, or by executing it from the command line.

CUSTOM MATH AND MEASUREMENTS

Custom Math and Measurements can be coded using VBScript in instruments equipped with the XDEV and/or XMAP software options. Using Automation control of the instrument, decisions can be made during custom processing that reconfigure the DSO.

When you are developing custom processing routines using the reference section of this manual, `app.Acquisition.Cx.Out.Result` may be used as a comprehensive reference to the Result Object, which is used to describe waveform data (InResult, InResult1, InResult2, OutResult).

For more detail about this capability, see the “Customization” section of the on-line Help Manual.

CustomDSO

CustomDSO enables customization of the instrument’s UI in instruments equipped with the XDEV and/or XMAP options. Two modes of operation are supported: Basic mode and Plug-in mode.

In Basic mode a Visual Basic Script (VBScript) program can be assigned to each of 8 buttons that can, optionally, appear at the bottom of the instrument’s display. By means of Automation, each of these may further reconfigure all 8 buttons, which would allow simple menu hierarchies to be generated.

In Plug-in mode an ActiveX control, created in any of a number of programming languages, can be inserted into the instrument’s menu system. Once “embedded,” this Plug-in can take full control of the DSO using Automation.

Full documentation on CustomDSO is available in the CustomDSO section of the on-line Help Manual.
Control from External Applications

Control of an X-Stream based instrument by Automation is possible from most modern programming languages (interpreted and/or compiled), and also from the "macro" capability of office productivity suites such as Microsoft Office.
From Visual Basic

From Visual Basic the `CreateObject` method is used to create the connection to an instrument by Automation.

The following code example creates this connection and sets up some of the instrument’s controls:

```
' Connect to the X-Stream DSO
Dim app as Object
Set app = CreateObject("LeCroy.XStreamDSO")

' Setup Vertical and Horizontal settings
app.Acquisition.C1.VerScale = 0.5
app.Acquisition.C1.VerOffset = 0.25

app.Acquisition.Horizontal.HorScale = 0.000001

' Disconnect from the DSO
Set app = Nothing
```

From MATLAB

The syntax for controlling the scope MATLAB uses the `actxserver` keyword to connect to the instrument.

The following code example creates this connection, enables variable vertical scale, reads the vertical scale value for C1, and increases it by a factor of 1.5, arms the scope, waits for the acquisition to be complete, and then reads out the value and mean of parameter P1.

```
% Connect to oscilloscope via DCOM at IP address 172.28.9.31
DSO = actxserver('LeCroy.XStreamDSO', '127.0.0.1')

% Readback instrument ID
get(DSO.Item('InstrumentID'),'Value')

% Create references to the Acquisition, C1, Measure and P1 objects for convenience
acq = DSO.Object.Item('Acquisition')
c1 = acq.Object.Item('C1')
meas = DSO.Object.Item('Measure')
p1 = meas.Object.Item('P1')

% Enable variable vertical scale for channel 1
set(c1,'VerScaleVariable',-1)

% Read the vertical scale for C1 and increase it by a factor of 1.5, re-read and display new scale
verscale = get(c1.Item('VerScale'), 'Value')
set(c1, 'VerScale', 1.5 * verscale)
verscale = get(c1.Item('VerScale'), 'Value')

% Invoke the Acquire method, and force a trigger if the acquisition isn't complete within 3 seconds.
invoke(acq, 'Acquire', 3, 1)

% Readout the value and mean of measurement P1 (requires P1 to be setup and displayed)
p1_val= get(p1.Out.Result,'Value')
p1_mean = get(p1.Object.Item('Mean').Result,'Value')
```

Creating references to objects at each level in the oscilloscope application’s object hierarchy is highly recommended in order to keep the code cleaner and easier to debug.

NOTE: Don’t confuse the control of the instrument from MATLAB (MATLAB “drives”) with the use of MATLAB from within a custom processing function (the instrument “drives”).
CHAPTER ONE

Overview

From MS Office (Excel)
Using Automation, control of the instrument from Microsoft Excel is very similar to control from Visual Basic. This is because the “macro language” used in the office suite is Visual Basic for Applications, a lightweight version of Visual Basic.

The following example shows how to add a button to an Excel spreadsheet that connects to, and controls, the instrument on which Excel is running. Note that this example was generated using Excel 2000, other versions of Excel support similar functionality, but the specific sequence of commands may be slightly different:

1. Enable the Forms toolbar using the View→Toolbars→Forms menu option.

2. Click the button icon on the toolbar and draw a button on the spreadsheet. The button will be labeled “Button 1” by default.

3. Right-click on the edge of the button and select Assign Macro from the drop-down menu.

4. Select the New button from the Assign Macro dialog; the macro editor will appear:

5. Type the following code into the subroutine:

   ```vba
   Set app = CreateObject("LeCroy.XStreamDSO")
   app.AutoSetup
   Set app = Nothing
   ```

Clicking on the newly created button will now execute this code segment, which connects to the DSO and performs an Auto Setup.
ABOUT AUTOMATION

CONTROL VARIABLES EXPLAINED

Traditionally, properties presented to an Automation Client are simple “variables” with types such as Integer (int), String (BSTR), Floating Point (single, double), etc.

Control variables in X-Stream are an extension of the traditional Automation pattern, without affecting how they appear to most Automation clients (see section below on early/late bound clients).

As an example of what this enables, consider the following:

Take a control such as VerScale (Volts/Div), this may be set and queried in Visual Basic as follows:

```vbnet
app.Acquisition.C1.VerScale = 0.5
CurrentValue = app.Acquisition.C1.VerScale
```

In addition, the following is supported:

```vbnet
minValue = app.Acquisition.C1.VerScale.GetMinValue
maxValue = app.Acquisition.C1.VerScale.GetMaxValue
```

This enables an Automation Client to not only set and query the current value of a control, but also to query its limits. This is useful in the generation of instrument-independent applications, or applications that present scope controls in a graphical user interface in which limits are required.

Various types of control variables are supported. The **Type** column in the X-Stream browser shows the control type:

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Type</th>
<th>Flags / Status</th>
<th>Range / HelpString</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplitude</td>
<td>1</td>
<td>Double</td>
<td></td>
<td>From 0.005 to 1 step 0.001</td>
</tr>
<tr>
<td>AuxInCoupling</td>
<td>DC50</td>
<td>Enum</td>
<td></td>
<td>DC50, GND</td>
</tr>
<tr>
<td>Frequency</td>
<td>1000</td>
<td>DoubleLockstep</td>
<td></td>
<td>From 5 to 5e+005 step 10, locked to 1 2.5E</td>
</tr>
<tr>
<td>Mode</td>
<td>Square</td>
<td>Enum</td>
<td></td>
<td>Square, TriggerEnabled, TriggerOn, PassFail, DCLevel, OFF</td>
</tr>
<tr>
<td>PulseWidth</td>
<td>0.1</td>
<td>Double</td>
<td>H</td>
<td>From 0.001 to 0.5 step 0.001</td>
</tr>
<tr>
<td>SetToTTL</td>
<td>false</td>
<td>Dual</td>
<td></td>
<td>0,-1 or False,True</td>
</tr>
</tbody>
</table>

The type designations are also given in the reference section of this manual, and are defined as follows:

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer</td>
<td>32-bit Integer Value</td>
</tr>
<tr>
<td>Double</td>
<td>Double-precision floating point value</td>
</tr>
<tr>
<td>DoubleLockstep</td>
<td>Double-precision floating point value locked to a non-linear (e.g., 1, 2, 5) sequence.</td>
</tr>
<tr>
<td>Enum</td>
<td>List Value (e.g., “Orange,” “Apple,” “Pear”)</td>
</tr>
<tr>
<td>String</td>
<td>String value</td>
</tr>
<tr>
<td>Bool</td>
<td>Boolean Value { True, False }, { 0, -1 }</td>
</tr>
<tr>
<td>Action</td>
<td>Action (no arguments or value)</td>
</tr>
</tbody>
</table>
The properties and methods available for each control are type-specific. Listed below are the most commonly used:

<table>
<thead>
<tr>
<th>TYPE</th>
<th>PROPERTIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer</td>
<td>VARIANT Value</td>
</tr>
<tr>
<td></td>
<td>Value(VARIANT)</td>
</tr>
<tr>
<td></td>
<td>int GetAdaptedValue</td>
</tr>
<tr>
<td></td>
<td>SetRequestedValue(int)</td>
</tr>
<tr>
<td></td>
<td>int GetRequestedValue</td>
</tr>
<tr>
<td></td>
<td>int GetDefaultValue</td>
</tr>
<tr>
<td></td>
<td>int GetGrain</td>
</tr>
<tr>
<td></td>
<td>int GetMax</td>
</tr>
<tr>
<td></td>
<td>int GetMin</td>
</tr>
<tr>
<td></td>
<td>Increment(int)</td>
</tr>
<tr>
<td>Double</td>
<td>VARIANT Value</td>
</tr>
<tr>
<td></td>
<td>Value(VARIANT)</td>
</tr>
<tr>
<td></td>
<td>double GetAdaptedValue</td>
</tr>
<tr>
<td></td>
<td>SetRequestedValue(double)</td>
</tr>
<tr>
<td></td>
<td>double GetRequestedValue</td>
</tr>
<tr>
<td></td>
<td>double GetDefaultValue</td>
</tr>
<tr>
<td></td>
<td>double GetGrainValue</td>
</tr>
<tr>
<td></td>
<td>double GetMaxValue</td>
</tr>
<tr>
<td></td>
<td>double GetMinValue</td>
</tr>
<tr>
<td></td>
<td>Increment(int)</td>
</tr>
<tr>
<td>DoubleLockstep</td>
<td>See Double</td>
</tr>
<tr>
<td>Enum</td>
<td>VARIANT Value</td>
</tr>
<tr>
<td></td>
<td>Value(VARIANT)</td>
</tr>
<tr>
<td></td>
<td>int GetAdaptedValue</td>
</tr>
<tr>
<td></td>
<td>SetRequestedValue(int)</td>
</tr>
<tr>
<td></td>
<td>int GetRequestedValue</td>
</tr>
<tr>
<td></td>
<td>int GetDefaultValue</td>
</tr>
<tr>
<td></td>
<td>int GetGrain</td>
</tr>
<tr>
<td></td>
<td>int GetMax</td>
</tr>
<tr>
<td></td>
<td>int GetMin</td>
</tr>
<tr>
<td></td>
<td>int GetNumberOfValueStates</td>
</tr>
<tr>
<td></td>
<td>Increment(int)</td>
</tr>
<tr>
<td></td>
<td>BSTR GetRangeStringScreen</td>
</tr>
<tr>
<td></td>
<td>BSTR GetRangeStringRemote</td>
</tr>
<tr>
<td>String</td>
<td>VARIANT Value</td>
</tr>
<tr>
<td></td>
<td>Value(VARIANT)</td>
</tr>
<tr>
<td></td>
<td>int GetMaxLength</td>
</tr>
<tr>
<td></td>
<td>BSTR GetRequestedValue</td>
</tr>
<tr>
<td></td>
<td>BSTR GetAdaptedValue</td>
</tr>
<tr>
<td></td>
<td>SetRequestedValue(BSTR)</td>
</tr>
<tr>
<td>Bool</td>
<td>VARIANT Value</td>
</tr>
<tr>
<td></td>
<td>Value(VARIANT)</td>
</tr>
<tr>
<td></td>
<td>BOOL GetAdaptedValue</td>
</tr>
<tr>
<td></td>
<td>BOOL GetRequestedValue</td>
</tr>
<tr>
<td></td>
<td>BOOL GetDefaultValue</td>
</tr>
<tr>
<td></td>
<td>Set</td>
</tr>
<tr>
<td></td>
<td>Clear</td>
</tr>
<tr>
<td>Action</td>
<td>ActNow</td>
</tr>
</tbody>
</table>
ABOUT AUTOMATION

ACCESSING WAVEFORM/MEASUREMENT RESULTS

Waveforms

Waveform data is exposed by a ‘Result’ object, which appears at various places in the object hierarchy depending upon which waveform is to be accessed. Some examples follow:

Waveform data is exposed as a simple array, no deciphering of proprietary binary formats is performed, as was necessary in the past. An example of how it is used follows.

The example is coded as an Excel macro, and should be assigned to a button as described earlier. The macro reads the number of samples in the waveform and places it in cell B1 of the Excel spreadsheet. It then reads all available sample data values and copies them into cells in the first column of the spreadsheet (A1...Axx).

```
Sub Button1_Click()
    ' Connect to the DSO
    Set app = CreateObject("LeCroy.XStreamDSO")

    ' Query the number of samples in C1 and store in cell "B1"
    Cells(1, 2).Value = numSamples

    ' Access the waveform data array, and fill the first column
    ' of the spreadsheet with it
    For i = 0 To numSamples - 1
        Cells(i + 1, 1).Value = wave(i)
    Next i
End Sub
```

NOTE: Ensure that the record length is < 64kSamples, since Excel has a limit on the number of rows in a spreadsheet. Ideally, you should start experimenting with short (500 point) records.

Measurements

Measurement results are read in the same way as Waveforms. The following example, when copied into an Excel macro, will enable Standard Vertical parameters. It will then transfer the eight parameter values into the spreadsheet (cells C1...C8):

```
Sub Button1_Click()
    ' Connect to the DSO
    Set app = CreateObject("LeCroy.XStreamDSO")

    ' Enable Standard Vertical Parameters
    app.Measure.MeasureMode = "StdVertical"
```
' Transfer the 8 parameter values into the spreadsheet
'Note: the number of configurable measurements your scope may be different

Set app = Nothing
End Sub

Statistics are also available for each parameter using two different kinds of calls:

result = app.Measure.P1.mean.Result.Value
result = app.Measure.P1.max.Result.Value
result = app.Measure.P1.min.Result.Value
result = app.Measure.P1.num.Result.Value
result = app.Measure.P1.sdev.Result.Value

In addition, the data used to display the Histicon is available using the “histo” statistic:

Sub Button1_Click()
 Set app = CreateObject("LeCroy.XStreamDSO")
 For i = 0 To numBins - 1
 Cells(i + 1, 4).Value = bins(i)
 Next I
 Set App = Nothing
End Sub
Result Status

The waveform result object described above includes a status property (bit-field) that reflects the current status of the trace. This includes both ‘warning’ and ‘error’ conditions, as described below.

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>Bit #</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEC_Valid</td>
<td>0x0000000000000000</td>
<td>0</td>
</tr>
<tr>
<td>LEC_Invalid</td>
<td>0x0000000000000000</td>
<td>1</td>
</tr>
<tr>
<td>LEC_Overflow</td>
<td>0x0000000000000000</td>
<td>2</td>
</tr>
<tr>
<td>LEC_Underflow</td>
<td>0x0000000000000000</td>
<td>3</td>
</tr>
<tr>
<td>LEC_ContainsUndefinedValues</td>
<td>0x0000000000000000</td>
<td>4</td>
</tr>
<tr>
<td>LEC_LessThan</td>
<td>0x0000000000000000</td>
<td>5</td>
</tr>
<tr>
<td>LEC_GreaterThan</td>
<td>0x0000000000000000</td>
<td>6</td>
</tr>
<tr>
<td>LEC_NotAPulse</td>
<td>0x0000000000000000</td>
<td>7</td>
</tr>
<tr>
<td>LEC_Averaged</td>
<td>0x0000000000000000</td>
<td>8</td>
</tr>
<tr>
<td>LEC_UnlockedPLL</td>
<td>0x0000000000000000</td>
<td>9</td>
</tr>
<tr>
<td>LEC_OtherError</td>
<td>0x0000000000000000</td>
<td>10</td>
</tr>
<tr>
<td>LEC_OtherWarning</td>
<td>0x0000000000000000</td>
<td>11</td>
</tr>
<tr>
<td>LEC_OtherInfo</td>
<td>0x0000000000000000</td>
<td>12</td>
</tr>
<tr>
<td>LEC_InputsIncompatible</td>
<td>0x0000000000000000</td>
<td>13</td>
</tr>
<tr>
<td>LEC_AlgorithmLimitsReached</td>
<td>0x0000000000000000</td>
<td>14</td>
</tr>
<tr>
<td>LEC_BadDefinition</td>
<td>0x0000000000000000</td>
<td>15</td>
</tr>
<tr>
<td>LEC_TooFewData</td>
<td>0x0000000000000000</td>
<td>16</td>
</tr>
<tr>
<td>LEC_TooManyData</td>
<td>0x0000000000000000</td>
<td>17</td>
</tr>
<tr>
<td>LEC_UniformHorizIntervalRequired</td>
<td>0x0000000000000000</td>
<td>18</td>
</tr>
<tr>
<td>LEC_BadUnits</td>
<td>0x0000000000000000</td>
<td>19</td>
</tr>
<tr>
<td>LEC_DataRangeTooLow</td>
<td>0x0000000000000000</td>
<td>20</td>
</tr>
<tr>
<td>LEC_DataUndersampled</td>
<td>0x0000000000000000</td>
<td>21</td>
</tr>
<tr>
<td>LEC_PoorStatistics</td>
<td>0x0000000000000000</td>
<td>22</td>
</tr>
<tr>
<td>LEC_SlowTransitionTime</td>
<td>0x0000000000000000</td>
<td>23</td>
</tr>
<tr>
<td>LEC_DataResampled</td>
<td>0x0000000000000000</td>
<td>24</td>
</tr>
<tr>
<td>LEC_DataInterpolated</td>
<td>0x0000000000000000</td>
<td>25</td>
</tr>
<tr>
<td>LEC_MeasurementScaleImprecise</td>
<td>0x0000000000000000</td>
<td>26</td>
</tr>
<tr>
<td>LEC_NoDataAvailable</td>
<td>0x0000000000000000</td>
<td>27</td>
</tr>
<tr>
<td>LEC_SomeCummulatedResultsInvalid</td>
<td>0x0000000000000000</td>
<td>28</td>
</tr>
<tr>
<td>LEC_InsufficientMemory</td>
<td>0x0000000000000000</td>
<td>29</td>
</tr>
<tr>
<td>LEC_ChannelNotActive</td>
<td>0x0000000000000000</td>
<td>30</td>
</tr>
<tr>
<td>LEC_UseStatusDescription</td>
<td>0x0000000000000000</td>
<td>31</td>
</tr>
</tbody>
</table>
SYNCHRONIZATION

Synchronization or, more specifically, knowing when to read results, is critical when working with a digital oscilloscope by remote control (it is just as important by IEEE488.2 control as by Automation). This is especially true when working with an oscilloscope that uses a multithreaded architecture.

A classic problem seen in the majority of custom applications that control LeCroy (or other) DSOs is that the scope is left to free-run in Auto-trigger mode while simultaneously (and asynchronously) results are queried.

While working with the instrument via the Automation interface, there are a few techniques that can be used to guarantee the synchronization and consistency of results, whether they be waveform or parameter measurements.

The following example demonstrates a useful technique for ensuring synchronization. This example runs as an Excel macro:

```vba
Sub Button1_Click()
    ' Connect to the DSO
    Set app = CreateObject("LeCroy.XStreamDSO")

    ' Enable Standard Vertical parameters
    app.Measure.MeasureMode = "StdVertical"

    ' Stop the free-running trigger and take a single acquisition
    ' Use a 10 second timeout in the case that the acquisition is not complete.
    app.Acquisition.TriggerMode = "Stopped"
    app.Acquisition.Acquire (10, True)

    ' Read the first parameter value and transfer into the spreadsheet

End Sub
```

The `Acquire` method arms the acquisition system and waits for a user-specified time for a trigger. The second argument, a Boolean, specifies whether or not to force a trigger before returning if a trigger doesn’t arrive within the allotted time period. The method also returns a Boolean value signifying whether or not a trigger arrived. See the reference section for more information on this useful method.

Another scenario where synchronization is necessary is between changing settings and reading results, even when no acquisition took place. For this the `WaitUntilIdle` method is used. This method is “blocking” and will not return control until the setup request has completed.

*Note that the `Acquire` method is equivalent to setting the Trigger Mode to “Single”, then executing `WaitUntilIdle`.
An example of **WaitUntilIdle** usage follows. Note that WaitUntilIdle is not for use when in NORMAL or AUTO trigger mode.

```vba
Sub Button1_Click()
' Connect to the DSO
Set app = CreateObject("LeCroy.XStreamDSO")

' Enable Standard Vertical parameters
app.Measure.MeasureMode = "StdVertical"

' Wait for the change to take place for a max. of 5 seconds
app.WaitUntilIdle(5)

' Read the value of measurement P1 (pkpk) and transfer into the spreadsheet

' Enable Standard Horizontal parameters
app.Measure.MeasureMode = "StdHorizontal"

' Wait for the change to take place for a max. of 5 seconds
app.WaitUntilIdle(5)

' Read the value of measurement P1 (rise time) and transfer into the spreadsheet
End Sub
```

NOTE: In almost all remote control applications, it is HIGHLY RECOMMENDED that you STOP acquisitions before accessing result data. Most remote control problems are caused by failure to follow this practice.
GOOD PRACTICES

- Using the `app.SetToDefaultSetup` action, restore the instrument to its default state before setting the controls required by an application. This eliminates any dependency on the previous configuration of the instrument. LeCroy strives to ensure that the default state of the instrument is constant from one software release to the next.

- Synchronization is an important concept that needs to be understood before you work with an X-Stream DSO via Automation. Attempting to read results while acquisitions are in progress could cause inconsistent results.

- Use the X-Stream Browser while developing Automation applications. This tool is guaranteed to show the up-to-date status of the Automation hierarchy since it retrieves it from a running instrument. It is also a very quick and easy way to exercise controls in real-time without your having to write a single line of code.

- When using a result object, verify that the status is valid to ensure that the acquisition and/or processing was valid.

EXAMPLES

Following are fairly complete examples of automating an X-Stream DSO, including configuration, acquisition, and reading results. Examples are given both as Excel macros, and as Visual Basic Scripts, which can run without Excel being loaded on the instrument.

Example 1: Excel Macro to Perform FFT of C1

```vba
Sub Button1_Click()
    ' Connect to the DSO
    Set app = CreateObject("LeCroy.XStreamDSO")

    ' Restore the instrument to its default state
    app.SetToDefaultSetup

    ' Stop acquisitions during setup
    app.Acquisition.TriggerMode = "Stopped"

    ' Turn C2 off (default state leaves C1 and C2 On)
    app.Acquisition.C2.View = False

    ' Configure F1=FFT(C1), using a Blackman-Harris filter
    app.Math.F1.View = True
    app.Math.F1.Source1 = "C1"
    app.Math.F1.Operator1 = "FFT"
    app.Math.F1.Operator1Setup.Window = "BlackmanHarris"

    ' Take a single acquisition, force after 2 seconds if it doesn't trigger
    app.Acquisition.Acquire 2, True

    ' Read out the FFT
    ' Query the number of samples in F1 and store in cell "B1"
    Cells(1, 2).Value = numSamples

    ' Access the waveform data array, and fill the first column
```
' of the spreadsheet with it
For i = 0 To numSamples - 1
 Cells(i + 1, 1).Value = wave(i)
Next

End Sub

Example 2: VBScript Program to Perform FFT of C1 and Store Results in Text File

This example requires no additional software to be installed on the instrument, since it relies upon the built-in Visual Basic Script interpreter. The example is very similar to the previous Excel example, the most notable difference being the use of a standard system ActiveX control, "Scripting.FileSystemObject", to enable the creation of files containing waveform data in ASCII format.

' VBScript example
' Configure the DSO to perform an FFT on Channel 1 and store
' the resulting data in a text file in ASCII format

' Connect to the DSO
Set app = CreateObject("LeCroy.XStreamDSO")

' Restore the instrument to its default state
app.SetToDefaultSetup

' Stop acquisitions during setup
app.Acquisition.TriggerMode = "Stopped"

' Turn C2 off (default state leaves C1 and C2 On)
app.Acquisition.C2.View = False

' Configure F1=FFT(C1), using a Blackman-Harris filter
app.Math.F1.View = True
app.Math.F1.Source1 = "C1"
app.Math.F1.Operator1 = "FFT"
app.Math.F1.Operator1Setup.Window = "BlackmanHarris"

' Take a single acquisition, force after 2 seconds if it doesn't trigger
app.Acquisition.Acquire 2, True

' Readout the FFT

Set fso = CreateObject("Scripting.FileSystemObject")
Set MyFile= fso.CreateTextFile("c:\XStreamFFT.txt", True)

' Write the FFT power spectrum into the file, sample by sample
For i = 0 To numSamples - 1
 MyFile.WriteLine(wave(i))
Next

' Clean up
MyFile.Close
Set fso = Nothing
Set app = Nothing
Example 3: Script to Measure the Rise Time of the Signal on C1 and Display It in a Popup Window

This example configures the DSO to measure the rise time of the signal on C2, take a single acquisition, and present the results in a popup dialog. The example requires no additional software to be installed on the instrument, since it relies on the built-in Visual Basic Script interpreter.

' VBScript example
' Configure the DSO to measure the rise time of the signal
' on Channel 1 and display it in a popup message box.

' Connect to the DSO
Set app = CreateObject("LeCroy.XStreamDSO")

' Restore the instrument to its default state
app.SetToDefaultSetup

' Stop acquisitions during setup
app.Acquisition.TriggerMode = "Stopped"

' Turn C2 off (default state leaves C1 and C2 On)
app.Acquisition.C2.View = False

' Configure P1=rise(C1)
app.Measure.MeasureMode = "MyMeasure"
app.Measure.P1.View = True
app.Measure.P1.ParamEngine = "rise"

' Take a single acquisition, force after 2 seconds if it doesn't trigger
app.Acquisition.Acquire 2, True

' Present the rise time in a popup message box

' Clean up
Set app = Nothing
EARLY AND LATE BINDING

The COM standard on which Automation is built supports two kinds of "binding" between client and server: early (static), and late (dynamic, dispatch). Static binding usually involves a type library and is used primarily by compiled languages such as C++. In this case, function entry points are resolved at compile time. Dynamic binding (also known as late binding) involves resolving method and property calls at run time, as opposed to compile time.

The Automation interfaces in X-Stream based DSOs use primarily the latter: Dynamic binding. From many programming languages (VB, VBScript, etc.) this is transparent. But when you are developing applications in C++, which does not provide late-binding natively, the use of a “helper” class is required. This is demonstrated below:

```cpp
#include "stdafx.h"
#include "AtlBase.h"
CComModule _Module;
#include "AtlCom.h"

CComPtr<IDispatch> spDso;
CComDispatchDriver ddDso; // dispatch ptr. to root of object model (app)

int main(int argc, char* argv[]) {  
    printf("Hello X-Stream World!\n");
    ::CoInitialize(NULL);
    HRESULT hr = spDso.CoCreateInstance(L"LeCroy.XStreamDSO");
    if(SUCCEEDED(hr)) {  
        ddDso = spDso;
        // perform an Auto-Setup (app.Autosetup)
        hr = ddDso.Invoke0(L"AutoSetup");

        // retrieve a Dispatch ptr. to the app.Display object
        CComVariant displayPtr;
        hr = ddDso.GetPropertyByName(L"Display", &displayPtr);
        CComDispatchDriver ddDisplay(displayPtr.pdispVal);

        // enter Dual-grid mode (app.Display.GridMode = "Dual")
        hr = ddDisplay.PutPropertyByName(L"GridMode", &CComVariant("Dual"));
    }
    return 0;
} 
```
VBS REMOTE COMMAND

For users who wish to harness the power of Automation control of an instrument, but are currently using “traditional” remote commands via GPIB or the network (using the VICP protocol), there is a solution. This is primarily of interest in controlling the advanced features of X-Stream DSOs, which are not supported by a traditional remote command.

X-Stream instruments, in addition to supporting LeCroy’s standard remote command set, also support a new command/query called VBS[?]. This command may be used in traditional remote control applications to access Automation controls.

This example shows two methods for setting the V/Div of Channel 1, the former using a traditional remote command, VDIV, and the latter using an Automation control via the new remote command, VBS. These two commands are equivalent:

```
C1:VDIV 0.5

VBS 'app.Acquisition.C1.VerScale = 0.5'
```

In its query form the following are equivalent:

```
C1:VDIV?

VBS? 'return = app.Acquisition.C1.VerScale'
```

A couple of points to note here are that the app variable is pre-defined and refers to the root of the Automation hierarchy. Also note that for the query form the return = is important, it indicates which value you wish to return to the caller.

The VBS[?] Command/Query is documented in more detail in the Remote Control Manual for X-Stream DSOs.
The object hierarchy exposed by X-Stream based instruments is rooted at the Application object. This is the object returned when the `CreateObject("LeCroy.XStreamDSO")` method is executed in Visual Basic. All major instrument subsystems are available from this object, and many of these subsystems themselves are broken down further. Note that to simplify this figure only the first and last of the collections of Channels, Memories, Math, and Measurements are shown.

The reference section of this manual describes the controls presented by each of these objects.

NOTE: The root of the object hierarchies of some software options are not shown in this diagram.
ABOUT RESULTS

PART TWO: About Results
In this chapter learn about
- X-Stream DSO’s rich set of Result Interfaces
- How to read waveforms (and other results) from the X-Stream DSO, and write them back into the instrument
ABOUT RESULTS

INTRODUCTION

This section presents details on the rich ‘Result’ interfaces of the X-Stream DSO. These interfaces contain more than just the basic results, such as waveform data and measurement values; it includes information about horizontal and vertical resolution, event times, number of sweeps, histogram peaks, etc.

The properties that are available for readout depend on the type of result. The 7 different Results Interfaces are:

- Digital
- Histogram
- Param
- Persist
- Table
- Waveform
- XY

The following section describes each interface, followed by a detailed explanation of each property.

Interface Descriptions

Digital

The Digital interface is found when using one of the mixed-signal oscilloscope options to generate digital (bi-state) waveforms. These waveforms are contained in the Digitalx trace name, where x = 1, 2, 3 etc. Each Digitalx trace is a bus that may contain multiple digital lines, with a maximum number dependent on the capabilities of the mixed-signal oscilloscope option. The key property in the Digital interface is the DataArray, which is a 2D array containing the value of each sample of each digital line in the bus.

Example paths to Digital Result interfaces:

```plaintext
```

Histogram

The Histogram interface is used for all histogram traces. Histograms can be configured on most oscilloscopes as a math function (Fx). Histograms are also used in various analysis modes, especially on Serial Data Analyzers, where the HTIE trace is the source data for the algorithm to calculate Total Jitter (Tj). The key property is BinPopulations, which is a 1D array of the bin populations.

Example paths to HTIE Result interfaces:

```plaintext
app.Math.F1.Out.Result  (assuming that F1 is setup as a Histogram)
app.SDA.Htie.Out.Result
```

Param

The Parameter interface is used in the Measurement and Pass/Fail systems to hold both individual results and result arrays. The key properties for the Parameter interface are Value and ValueArray. Value holds the last measurement or P/F result, while ValueArray holds all measurements taken for the last acquisition.

Example paths to Param Result interfaces:

```plaintext
app.Measure.Measure("P1").Out.Result
```
Persist

The Persist interface is most often found when using software options that create eye diagrams or other waveshapes that are the result of overlaying multiple waveforms. (Note that this does not apply to the Persistence display mode.) The key property in the Persist interface is the **DataArray**, which is a 2D array containing the population of each pixel of the persistence map. Example paths to Persist Result interfaces:

```
app.SDA.Eye.Out.Result
app.SDA.Eye2.Out.Result
```

Table

Table Results interfaces are used primarily used in conjunction with the various low-speed serial decoding options, such as CAN, I2C, SPI, UART, etc. When the table is displayed, the user has access to information about the messages decoded for the last acquisition. Retrieving data from the Table interface involves some knowledge of the table’s structure, in terms of the columns that are displayed and the cell types. The **CellType** and **CellValue** are the key properties to use to retrieve the table’s data. See the information in the **CellValue** property for more information. Example paths to Table Result interfaces:

```
app.SerialDecode.Objects("Decode2").Out.Result
```

Waveform

Waveform Results interfaces can be found wherever there is basic Voltage vs. Time waveforms. Examples include channel (Cx), memory (Mx), math function (Fx) and zoom (Zx) traces, as well as others that are associated with specific analysis packages, such as the Power waveform used in the PMA2 package. In general, these waveforms are usual voltage vs time, unless a current probe or other method of changing the vertical units (e.g. the Rescale Math function) is employed. The key property in the Waveform interface is the **DataArray**, which is a 1D array containing the value of each sample in the waveform. Example paths to Waveform Result interfaces:

```
app.Acquisition.Channels("C1").Out.Result
app.SDA.Btub.out.Result
app.SDA.TIETrend.Out.Result
app.PMA.Pwr.Out.Result
```

(Note that traces like F2 and Z3 can hold waveforms like histograms, which do not use the Waveform interface.)

XY

The XY interface is used on XY waveforms. Users can create an XY waveform by selecting this option in the Display Setup… screen. XY waveforms allow you to see how the signal on one channel moves in relation to another. The key property is the **DataArray**, which is a 2D array that returns the voltages on the X and Y sources for each XY pair. Example path to the XY Result interface:

```
app.Math.XY.Out.Result
```
ABOUT RESULTS

OVERVIEW OF RESULTS

Variable Types

The examples in this section use the following standards:

- **Integer** is 16 bit signed integer
- **Long** is 32 bit signed integer
- **Double** is 8 byte floating point type
- **String** is an array of characters
- **Object** is a object with its own interface.

Where a variable is dimensioned without indicating a variable type, the variable is a variant.

Use of Variants

Several properties, most significantly the **DataArray** object, is a variant containing either a one or two dimensional array. Dimension the target variable as a variant type, and assign the DataArray property to it. See the DataArray property for examples of its use within each of the Result interfaces.

Using Variables to Reference Objects within the XStream Hierarchy

One way to increase the readability and simplicity of your source code is to use variables to reference objects that are at each level of the XStream Hierarchy. For example, here is the code to read out the Sweeps property for channel 1:

```vbnet
Dim numSweeps as Long
```

If you are reading out more than just the Sweeps property, you might find it easier to read the following:

```vbnet
Dim C1Res as Object
Dim C1 as Object
Dim numSweeps as Long
Dim HorizontalOffset As Double
Dim HorizontalPerStep As Double
Dim VerticalOffset As Double
Dim VerticalPerStep As Double
Dim wform

C1 = app.Acquisition.C1
C1.AverageSweeps = 200
numSweeps = C1Res.Sweeps
HorizontalOffset = C1Res.HorizontalOffset
HorizontalPerStep = C1Res.HorizontalPerStep
VerticalOffset = C1Res.VerticalOffset
VerticalPerStep = C1Res. VerticalPerStep
```
The examples in this chapter do not make use of this approach in order to show the “full story”, but it is recommended. The panel setup files make heavy use of using variables to objects, making them far more readable and editable:

```vbscript
Set Acquisition = XStreamDSO.Acquisition
Set C1 = Acquisition.C1
' C1 ...
C1.View = True
C1.UseGrid = "YT1"
C1.Persisted = False
C1.PersistenceSaturation = 50
C1.PersistenceMonoChrome = True
C1.Persistence3d = False
C1.ShowLastTrace = False
C1.PersistenceTime = "Infinite"
C1Persist3DQuality = "Solid"
C1.AxisXRotation = 45
C1.AxisYRotation = 20
C1.LabelsText = ""
C1.LabelsPosition = ""
C1.ViewLabels = False
C1.SegmentMode = "Adjacent"
C1.ProbeAttenuation = 1
C1.VerScale = 0.05
C1.VerScaleVariable = False
C1.VerOffset = 0
C1.Coupling = "DC50"
C1.BandwidthLimit = "Full"
C1.AverageSweeps = 1
C1.InterpolateType = "Linear"
C1.Invert = False
C1.Deskew = 0
C1.NumSegmentsDisplayed = 1
C1.StartSegment = 1
```
DESCRIPTION OF RESULT PROPERTIES

Base
Applies to: Histogram
Description: Horizontal coordinate of the leftmost of the two most populated histogram peaks. It is equivalent to the parameter hbase.
Example:
Dim hbase as Double

BinPopulations
Applies to: Histogram
Description: VARIANT array containing the populations of each bin. Bin 0 is the first bin. Index the array to retrieve the number of counts in a given bin.
Example:
'Read out BinPopulations by indexing the array using the
'FirstPopulatedBin and LastPopulatedBin properties as boundaries
'Also shows code for determining coordinate of bin centers
Const STARTROW = 5
Dim i As Integer
Dim BinPops
Dim FirstPopulatedBin, LastPopulatedBin As Integer
Dim OffsetAtLeftEdge As Double
Dim BinWidth As Double
For i = FirstPopulatedBin To LastPopulatedBin
 Cells(i - FirstPopulatedBin + STARTROW + 1, 7) = i
 'Calculate Bin Center
 Cells(i - FirstPopulatedBin + STARTROW + 1, 8) = OffsetAtLeftEdge + (BinWidth / 2) + BinWidth * i
 Cells(i - FirstPopulatedBin + STARTROW + 1, 9) = BinPops(i)
Next

Bins
Applies to: Histogram
Description: Number of bins in the histogram.
Example:
Dim Bins as Integer

BinWidth
Applies to: Histogram
Description: Width of each bin in the histogram.
Example:
Dim BinWidth as double
CHAPTER TWO

Overview

BusName
Applies to: Digital
Description: Name of the bus, which can be configured via the user interface or by the automation property

Example:
```vba
Dim BusName As String
```

CellType
Applies to: Table
Description: Datatype for the selected cell in a table. This is used in order to properly readout the CellValue.

Arguments:
- Row: 0-based index of the row containing the cell. Use the Rows property to determine the maximum number of rows.
- Column: 0-based index of the column containing the cell. Use the Columns property to determine the maximum number of columns.

Result type: Enumerated, with the following definitions:
- 0: Variant
- 2: Param result interface
 (other values exist, but do not apply to the Table interface)

Example:
```vba
' Returns CellType for row 1, column 1
Dim CellType As Integer
CellType = app.SerialDecode.Decode1.Out.Result.CellType(1, 1)
```

CellValue
Applies to: Table
Description: The value for the selected cell in a table. The method for reading back CellValue depends on the cell's CellType property. For cells where CellType = 0 (variant), then CellValue contains the cell's value. For CellType = 2, CellValue becomes a Param result interface with its own value property. See the example for more information.

Arguments:
- Row: 0-based index of the row containing the cell
- Column: 0-based index of the column containing the cell

Example:
```vba
' When the CellType for the cell = 0, read out the value directly, as shown below.
' This call often returns "Idx", which is the header for column 0
CellValue = app.SerialDecode.Decode1.Out.Result.CellValue(0, 0)

' The code below demonstrates how to readback the cell value when the CellType for the cell = 2:
Dim DecoderTableResult As Object
Set DecoderTableResult = app.SerialDecode.Decode1.Out.Result
Dim CellValueOb As Object
```
Set CellValueOb = DecoderTableResult.CellValue(1, 2)
CellValue = CellValueOb.Value

Scopes that have a serial decoder option include a script for outputting the table of decoded values. These can be found on the scope within the D:\Applications folder.

Columns

 Applies to: Persist, Table

Description: Number of columns in the DataArray. Typically equal to 1000 for Persist waveforms. For Tables, the result can vary depending on the application.

Example:

Dim Columns As Integer

'Persist example

'Table example

DataArray

 Applies to: Digital, Persist, Waveform, XY

General Description: Variant array containing data for a trace. The implementation depends on the type of waveform; see below for further details.

XY Interface:

Arguments (optional):

arrayValuesScaled as Boolean

Default value: TRUE, data is scaled

Determines whether returned values are scaled or raw. Passing TRUE indicates scaled data; FALSE indicates raw data. Scaled values are double precision; raw values are 16-bit signed integers. See the properties XVerticalPerStep, XVerticalResolution and XVerticalOffset properties (and the corresponding Y coordinate) for more information

numSamples as Long

Default value: -1, retrieve all data

Number of samples to retrieved

startIndex as Long

Default value: 0, first sample

Index of the first sample to be retrieved.

sparsingFactor as Long

Default value: 1, no sparsing

Determines the sparsing factor to use. For example, a sparsing factor of 5 means to retrieve every 5th point. (Note: Use the math function called Sparse in order to configure sparsing offset)

Example:

'Reads values to use for DataArray arguments from a spreadsheet, and then loops through
'the retrieved array, saving the data to the spreadsheet along with sample index and sample time.
Const ROWOFFSET = 10
Const COLOFFSET = 7
Dim HorizontalPerStep As Double
Dim HorizontalOffset As Double
Dim ScaleArray As Boolean
Dim nSamples As Long
Dim startIndex As Long
Dim sparseFactor As Long
Dim XYwform
ScaleArray = Cells(9, 5)
nSamples = Cells(10, 5)
startIndex = Cells(11, 5)
sparseFactor = Cells(12, 5)
XYwform = app.Math.XY.Out.Result.DataArray '(ScaleArray, nSamples,
startIndex, sparseFactor)
VerticalPerStep = app.Math.XY.Out.Result.HorizontalPerStep

For i = 0 To UBound(XYwform)
 For j = 0 To 1
 Cells(i + ROWOFFSET, COLOFFSET) = i
 'Calculate sample time
 Cells(i + ROWOFFSET, COLOFFSET + 1) = HorizontalPerStep * i +
 HorizontalOffset 'Sample
 Cells(i + ROWOFFSET, COLOFFSET + 2) = XYwform(i, 0) 'X coordinate
 Cells(i + ROWOFFSET, COLOFFSET + 3) = XYwform(i, 1) 'Y coordinate
 Next j
Next i

Waveform Interface:

Arguments (optional):

arrayValuesScaled as Boolean
 Default value: TRUE, data is scaled
 Determines whether returned values are scaled or raw. Passing TRUE indicates scaled data;
 FALSE indicates raw data. Scaled values are double precision; raw values are 16-bit signed
 integers. (See the properties VerticalPerStep, VerticalResolution and VerticalOffset properties for
 more information)

numSamples as Long
 Default value: -1, retrieve all data
 Number of samples to retrieved

startIndex as Long
 Default value: 0, first sample
 Index of the first sample to be retrieved.

sparsingFactor as Long
 Default value: 1, no sparsing
 Determines the sparsing factor to use. For example, a sparsing factor of 5 means to retrieve
 every 5th point. (Note: Use the math function called Sparse in order to configure sparsing offset)

Example:
 'Reads values to use for DataArray arguments from a spreadsheet, and then
 loops through
 'the retrieved array, saving the data to the spreadsheet along with sample
 index and sample time.
Const ROWOFFSET = 10
Const COLOFFSET = 7
Dim HorizontalPerStep As Double
Dim HorizontalOffset As Double
Dim ScaleArray As Boolean
Dim nSamples As Long
Dim startIndex As Long
Dim sparseFactor As Long
Dim wform

ScaleArray = Cells(9, 5)
nSamples = Cells(10, 5)
startIndex = Cells(11, 5)
sparseFactor = Cells(12, 5)

wform = app.Acquisition.C1.Out.Result.DataArray(ScaleArray, nSamples, startIndex, sparseFactor)
HorizontalPerStep = app.Acquisition.C1.Out.Result.HorizontalPerStep

For i = 0 To UBound(wform)
 Cells(i + ROWOFFSET, COLOFFSET) = i
 Cells(i + ROWOFFSET, COLOFFSET + 1) = HorizontalPerStep * i + HorizontalOffset
 Cells(i + ROWOFFSET, COLOFFSET+2) = wform(i)
Next i

Persist Interface:

Description:

Retrieves a 2D array containing hits in each cell of the rectangle selected via the input arguments.

Arguments (optional):

numColumns as Long
 Default value: -1, retrieve all columns
 Number of columns to retrieve.

numRows as Long
 Default value: -1, retrieve all rows
 Number of rows to retrieve.

startColumn as Long
 Default value: 0, first column
 Index of the first column to retrieve. (0-based)

startRow as Long
 Default value: 0, first row
 Index of the first row to retrieve. (0-based)

Example:

'Reads values to use for DataArray arguments from a spreadsheet, and then loops through
'the retrieved array, saving the data to the spreadsheet.

Const ROWOFFSET = 10
Const COLOFFSET = 7
Dim numColumns As Long
Dim numRows As Long
Dim startColumn As Long
Dim startRow As Long
Dim wform

numColumns = Cells(9, 5)
umRows = Cells(10, 5)
startColumn = Cells(11, 5)
startRow = Cells(12, 5)
wform = app.SDA.Eye.Out.Result.DataArray(numColumns, numRows, startColumn, startRow)
For i = 0 To numRows - 1
 For j = 0 To numColumns - 1
 Cells(i + ROWOFFSET, j + COLOFFSET) = wform(i, j)
 Next j
Next i

Digital Interface:

Description:

Retrieves a 2D array containing the state of each sample on each line. The value 1 is returned if he sample was above the threshold, 0 if below.

Arguments (optional):

numSamples as Long
 Default value: -1, retrieve all data
 Number of samples to retrieved

numLines as Long
 Default value: -1, retrieve all lines.
 Number of digital lines to retrieve.

startIndex as Long
 Default value: 0, first index
 Index of the first sample to retrieve. (0-based)

startLine as Long
 Default value: 0, first digital line
 Index of the first digital line to retrieve (0-based). The user selects which lines to enable; only data from enabled lines are included in the DataArray

Example:

‘Reads values to use for DataArray arguments from a spreadsheet, and then loops through
‘the retrieved array, saving the data to the spreadsheet.

Const ROWOFFSET = 10
Const COLOFFSET = 7
Dim nSamples As Long
Dim nLines As Long
Dim startIndex As Long
Dim startLine As Long
Dim wform
ABOUT RESULTS

nSamples = Cells(9, 5)
nLines = Cells(10, 5)
startIndex = Cells(11, 5)
startLine = Cells(12, 5)

wform = app.LogicAnalyzer.Digital1.Out.Result.DataArray(nSamples, nLines,
startIndex, startLine)

'Saves the retrieved samples to a spreadsheet, with each digital line in a
column.
For j = 0 To UBound(wform, 2) ' index out lines
 For i = 0 To UBound(wform, 1) ' index out samples in line
 Cells(i + ROWOFFSET, j + COLOFFSET) = wform(i, j)
 Next
Next

ExtendedStatus
Applies to: All Result interfaces.
Description: Reserved for future use.
Example: N/A

FirstEventTime
Applies to: All Result interfaces.
Description: Absolute trigger time of the acquisition, or the time of the first trigger in an acquisition that utilizes
multiple sweeps. Examples of multi-sweep acquisitions are Sequence Mode and when a source channel is
configured for pre-processor averaging.

Times are returned encoded as a currency value (VT_CY) within a variant, this allows the use of the full 64-bit
resolution of the timestamp value. Values are referenced to 1st Jan 2000, with 1ns resolution. Note that VT_CY
values are stored as 64-bit (8 byte) two's complement integers, scaled by 10,000 to give a fixed-point number with
15 digits to the left of the decimal point, and 4 digits after. See the example for details on decoding
FirstEventTime as well as other properties that return times such as LastEventTime and UpdateTime.
Example:
Dim FirstEventTime
Dim TimeString as String
TimeString = DecodeTimeProperty(FirstEventTime)

What follows is a function for decoding the FirstEventTime, LastEventTime and UpdateTime properties.

Function DecodeTimeProperty(ByVal EventTime) As String
' Decodes result returned by FirstEventTime, LastEventTime and UpdateTime
properties
 Dim days, thedate, hours, thehour, minutes, theminute, seconds
 Dim outstring As String
 days = EventTime / (86400 * 100000#) ' use 1e5 since the data returned
is scaled by 10,000
 thedate = DateAdd("d", days, "1-Jan-00")
 hours = (days - Int(days)) * 24 ' calculate remaining hours
 thehour = Int(hours) ' truncate to get hour in the day
 minutes = (hours - thehour) * 60 ' calculate minutes since hour began
 theminute = Int(minutes) ' truncate to get minute value
 seconds = (minutes - theminute) * 60 ' calculate number of seconds
' Format output string
 DecodeTimeProperty = thedate & " " & thehour & ":" & theminute & ":" & seconds
End Function
End Function

FirstPopulatedBin

Applies to: Histogram

Description: Index of the first populated bin. (The first bin of the histogram is bin 0).

Example:

```vba
Dim FirstPopulatedBin as Integer
```

HorizontalFrameStart

Applies to: Digital, Histogram, Persist, Waveform, XY

Description: Coordinate of the left edge of the graticule containing the trace relative to the trigger time, which is at time = 0.

Example:

```vba
Dim XFrameStart As Double
```

HorizontalFrameStop

Applies to: Digital, Histogram, Persist, Waveform, XY

Description: Coordinate of the right edge of the graticule containing the trace relative to the trigger time, which is at time = 0.

Example:

```vba
Dim XFrameStop As Double
```

HorizontalOffset

Applies to: Digital, Histogram, Persist, Waveform, XY

Description: Time of the first sample. Note that the first sample is typically just off screen, to the left of the grid. Use this value when calculating the time for each sample.

Example:

```vba
'Waveform Interface example:
Dim HorizontalOffset As Double

Dim HorizontalPerStep As Double
HorizontalPerStep = app.Acquisition.C1.Out.Result.HorizontalPerStep

'Example of calculating sample times:
Dim SampleTime as Double
Dim i as Long
For i = 0 to numPoints-1
    SampleTime = HorizontalPerStep * i + HorizontalOffset
Next
```

For a more complete example, see the example under Waveform in **DataArray** as well as the function **GetDataArray_Click**
ABOUT RESULTS

HorizontalPerColumn
Applies to: Persist
Description: Difference in the horizontal coordinate of adjacent columns (typically in seconds). Use HorizontalPerColumn to determine the timing information for each column of the DataArray.
Example:
 Dim HorizontalPerColumn As Double
 HorizontalPerColumn = app.SDA.Eye.Out.Result.HorizontalPerColumn

HorizontalPerStep
Applies to: Digital, Histogram, Persist, Waveform, XY
Description: Time between samples, otherwise known as the sample interval. This is the inverse of the SampleRate.
Example:
 Dim HorizontalPerStep As Double
 HorizontalPerStep = app.Acquisition.C1.Out.Result.HorizontalPerStep

HorizontalResolution
Applies to: Digital, Histogram, Persist, Waveform, XY
Description: Resolution of the readout of horizontal values. Not directly related to the sample period.
Example:
 Dim HorizontalResolution As Double
Chapter Two

Overview

HorizontalUnits
Applies to: Digital, Histogram, Persist, Waveform, XY
Description: Resolution of the readout of horizontal values. Not directly related to the sample period.

Example:
```vbnet
dim HorizontalUnits as String
HorizontalUnits = app.Acquisition.C1.Out.Result.HorizontalUnits
```

HorizontalVarianceArray
Applies to: Waveform, XY
Description: Variant array with the variances from the nominal sample times. Used on WaveExpert oscilloscopes

Example:
```vbnet
dim HorizontalUnits as Double
HorizontalUnits = app.Acquisition.C1.Out.Result.HorizontalUnits
```

HorizontalVariances
Applies to: Waveform, XY
Description: Number of elements in HorizontalVarianceArray

Example:
```vbnet
dim HorizontalVarianceArray
```

IndexOfFirstSampleInFrame
Applies to: Waveform
Description: Index of the first sample that appears in the graticule. This is typically index 1, since index 0 is off-grid to the left. When traces are zoomed

Example:
```vbnet
dim IndexOfFirstSampleInFrame as Long
IndexOfFirstSampleInFrame = app.Acquisition.C1.Out.Result.IndexOfFirstSampleInFrame
```

LastEventTime
Applies to: All Result interfaces.
Description:
Time of the last contributing event in a set. Useful only when the result includes data produced by a sequence acquisition, or a cumulative operation such as averaging. Times are returned encoded as a currency value (VT_CY) within a variant; see description for FirstEventTime for decoding details.

Example:
```vbnet
dim LastEventTime
dim TimeString as String
TimeString = DecodeTimeProperty(LastEventTime)
```

See FirstEventTime for the code for the function DecodeTimeProperty, which is the example of decoding LastEventTime.
ABOUT RESULTS

LastPopulatedBin
Applies to: Histogram
Description: Index of the last populated bin. (The first bin of the histogram is bin 0).

Example:
Dim LastPopulatedBin as Long

Levels
Applies to: Digital
Description: Returns the value 2, corresponding to the number of levels possible.

Example:
Dim Levels As Integer

LineAliasName
Applies to: Digital
Description: Alias of the line name based on the input index. The alias for the line is displayed on the right side of the grid, and have values of the form "D0", "D1", etc.

Example:
Dim LineAliasName0 'As String
LineAliasName0 = app.LogicAnalyzer.Digital1.Out.Result.LineAliasName(0)

LineName
Applies to: Digital
Description: Name of the line. This can be modified via the user interface or via the property app.LogicAnalyzer.Digital1.LineNames

Example:
Dim LineName0 as String
LineName0 = app.LogicAnalyzer.Digital1.Out.Result.LineName(0)

Lines
Applies to: Digital
Description: Number of lines in the digital bus.

Example:
Dim Lines As Integer

Max
Applies to: Histogram
Description: Horizontal coordinate of the left edge of the last populated bin. It is equivalent to the hmax parameter.

Example:
Dim Max as double
MaxPopulation

Applies to: Histogram
Description: Mode of the histogram (population of the bin with the most hits).

Example:
```vbnet
Dim MaxPopulation as Long
```

MaxPopulationBin

Applies to: Histogram
Description: Index of the bin with the highest population. (The first bin of the histogram is bin 0).

Example:
```vbnet
Dim MaxPopulationBin as Integer
```

MaxPopulationInRectangle

Applies to: Persist
Description: Population of the largest element in the selected rectangle.
Arguments:

- numColumns as Long
 Default value: -1, use all columns
 Number of columns to use in maximum population search.

- numRows as Long
 Default value: -1, use all rows
 Number of rows to retrieve.

- startColumn as Long
 Default value: 0, first column
 Index of the first column to use. (0-based)

- startRow as Long
 Default value: 0, first row
 Index of the first row to use. (0-based)

Example:
```
'Example for determining the maximum population in the rectangle
Dim numColumns As Long
Dim numRows As Long
Dim startColumn As Long
Dim startRow As Long
Dim MaxPopulationInRectangle As Long
numColumns = Cells(9, 5)
umRows = Cells(10, 5)
startColumn = Cells(11, 5)
startRow = Cells(12, 5)
MaxPopulationInRectangle = app.SDA.Eye.Out.Result.MaxPopulationInRectangle(numColumns, _
umRows, startColumn, startRow)
'Use no arguments to select the full rectangle:
'MaxPopulationInRectangle = app.SDA.Eye.Out.Result.MaxPopulationInRectangle
ABOUT RESULTS

Mean
Applies to: Histogram
Description: Returns the mean value of the histogram. It is equivalent to the hmean parameter.
Example:
   Dim hmean as double

Min
Applies to: Histogram
Description: Horizontal coordinate of the left edge of the first populated bin. It is equivalent to the hmin parameter.
Example:
   Dim hmin as double

NumFrameDimensions
Applies to: All Result interfaces.
Description: Number of dimensions in the current result. For waveforms, this is typically = 2, (Voltage and time) dimensions). For X-Y mode the result is 3.
Example:
   Dim NumFrameDimensions as Integer

NumSamplesInFrame
Applies to: Waveform
Description: Number of samples within the graticule.
Example:
   Dim NumSamplesInFrame as Long
   NumSamplesInFrame = app.Acquisition.C1.Out.Result.NumSamplesInFrame

OffsetAtLeftEdge
Applies to: Histogram
Description: Horizontal coordinate of left edge of the first bin (either populated or unpopulated) displayed on the grid. Use OffsetAtLeftEdge as an offset for calculating the position of each bin.
Example:
   'Read out BinPopulations by indexing the array using the
   'FirstPopulatedBin and LastPopulatedBin properties as boundaries
   'Also shows code for determining coordinate of bin centers
   Const STARTROW = 5
   Dim i As Integer
   Dim BinPops
   Dim FirstPopulatedBin, LastPopulatedBin As Integer
   Dim OffsetAtLeftEdge As Double
   Dim BinWidth As Double


For i = FirstPopulatedBin To LastPopulatedBin
    Cells(i - FirstPopulatedBin + STARTROW + 1, 7) = i
    'Calculate Bin Center
    Cells(i - FirstPopulatedBin + STARTROW + 1, 8) = OffsetAtLeftEdge + (BinWidth / 2) + BinWidth * i
    Cells(i - FirstPopulatedBin + STARTROW + 1, 9) = BinPops(i)
Next

Peaks
Applies to: Histogram
Description: Number of peaks in the histogram.
Example:
Dim NumPeaks as Integer

PeakInfo
Applies to: Histogram
Description: VARIANT array returning information about the peak selected in the input argument. Sending 0 returns information for the entire histogram; input values from 1 to Peaks+1 returns information about the requested peak.
Argument (Optional):
    peakIndex
Selects the peak of interest. 0 requests information about the entire histogram; >0 requests information about a single peak.
Default value: 0

Definition of output elements:

<table>
<thead>
<tr>
<th>Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Mean</td>
</tr>
<tr>
<td>1</td>
<td>Sigma</td>
</tr>
<tr>
<td>2</td>
<td>Unused</td>
</tr>
<tr>
<td>3</td>
<td>Unused</td>
</tr>
<tr>
<td>4</td>
<td>FirstPopulatedBin</td>
</tr>
<tr>
<td>5</td>
<td>LastPopulatedBin</td>
</tr>
<tr>
<td>6</td>
<td>MaxPopulationBin</td>
</tr>
<tr>
<td>7</td>
<td>MaxPopulation</td>
</tr>
<tr>
<td>8</td>
<td>PopulationInside</td>
</tr>
</tbody>
</table>

Example:
' Reads out complete PeakInfo arrays for each peak.
Const STARTROW = 10
Const STARTCOL = 13
Dim PeakInfo
Dim i, j As Integer
Dim NumPeaks as Integer
For i = 0 To NumPeaks
    ' Index out a peak (index 0 is the entire histogram)
    Cells(STARTROW, STARTCOL + i) = i
'loop through each element of the selected PeakInfo array. There are 9 elements.
   For j = 0 To 8
      Cells(STARTROW + j + 1, STARTCOL + i) = PeakInfo(j)
   Next
Next

**PopulationInside**

Applies to: Histogram

Description: Population of the histogram for events contained within the number of bins configured.

**Example:**

```vba
Dim PopInside as Long
```

**PopulationOfRectangle**

Applies to: Persist

Description: Population of the selected rectangle.

**Arguments:**

- numColumns as Long
  Default value: -1, use all columns
  Number of columns to use in maximum population search.

- numRows as Long
  Default value: -1, use all rows
  Number of rows to retrieve.

- startColumn as Long
  Default value: 0, first column
  Index of the first column to use. (0-based)

- startRow as Long
  Default value: 0, first row
  Index of the first row to use. (0-based)

**Example:**

```vba
Dim numColumns As Long
Dim numRows As Long
Dim startColumn As Long
Dim startRow As Long
Dim PopulationOfRectangle As Long
numColumns = Cells(9, 5)
numRows = Cells(10, 5)
startColumn = Cells(11, 5)
startRow = Cells(12, 5)
 numRows, startColumn, startRow)
```

**PopulationOver**

Applies to: Histogram

Description: Population of the events greater than the last bin.
Example:
Dim PopOver as Long

PopulationUnder
Applies to: Histogram
Description: Population of the events less than the first bin.
Example:
Dim PopUnder as Long

RMS
Applies to: Histogram
Description: RMS value of the histogram. Equivalent to the parameter hrms.
Example:
Dim hRMS as Double

Rows
Applies to: Persist, Table
Description: Number of rows in the DataArray (Persist) or in the table. Typically equal to 256 for Persist waveforms. For Tables, the result can vary depending on the application.
Example:
'Persist example
Dim Rows As Integer
Rows = app.SDA.Eye.Out.Result.Rows

Samples
Applies to: Digital, Waveform, XY
Description: Number of samples in the waveform. For the Waveform and XY interface, this is typically the number of samples configured for the acquisition (e.g. 500) plus 2. The additional two points are off-grid, one on each side. For the Digital interface, this is the number of samples in each digital line + 1.
Example:
Dim Samples as Long

Sdev
Applies to: Histogram
Description: Standard deviation of the histogram. Equivalent to the parameter hsdev.
Example:
Dim hsdev as Double
## Status

Description: Result status. Status is returned as a decimal value, but should be treated like a register with the following bit values. See the example for decoding the Status result.

<table>
<thead>
<tr>
<th>64-bit hexadecimal int value shown in XStreamBrowser</th>
<th>VT_DECIMAL value returned from Status property</th>
<th>StatusDescription</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x1</td>
<td>0.0001</td>
<td>Invalid result</td>
<td>Indicate that this Result cannot be used for any calculation</td>
</tr>
<tr>
<td>0x2</td>
<td>0.0002</td>
<td>Data overflow</td>
<td>Result contains Overflow data or is calculated from a Result containing Overflows.</td>
</tr>
<tr>
<td>0x4</td>
<td>0.0004</td>
<td>Data underflow</td>
<td>Result contains Underflow data or is calculated from a Result containing Underflows</td>
</tr>
<tr>
<td>0x8</td>
<td>0.0008</td>
<td>Some values are undefined</td>
<td>Result contains some values or data that are undefined.</td>
</tr>
<tr>
<td>0x10</td>
<td>0.0016</td>
<td>Less than</td>
<td>Actual value is likely to be less than the calculated value. Mostly used for parameter measurements.</td>
</tr>
<tr>
<td>0x20</td>
<td>0.0032</td>
<td>Greater than</td>
<td>Actual value is likely to be greater than the calculated value. Mostly used for parameter measurements.</td>
</tr>
<tr>
<td>0x40</td>
<td>0.0064</td>
<td>Not a pulse</td>
<td>Analyzed signal is not recognized as a pulse; mostly used for pulse parameter measurements.</td>
</tr>
<tr>
<td>0x80</td>
<td>0.0128</td>
<td>Not cyclic</td>
<td>Contains some values measured on non-cyclic signal.</td>
</tr>
<tr>
<td>0x100</td>
<td>0.0256</td>
<td>Data averaged</td>
<td>Calculated value is the result of an average of multiple measurements.</td>
</tr>
<tr>
<td>0x200</td>
<td>0.0512</td>
<td>Unlocked PLL</td>
<td>Unlocked PLL</td>
</tr>
<tr>
<td>0x400</td>
<td>0.1024</td>
<td>Other error</td>
<td>Indicates some other error condition, usually accompanied by a processor-specific status description</td>
</tr>
<tr>
<td>0x800</td>
<td>0.2048</td>
<td>Other warning</td>
<td>Indicates some other warning condition, usually accompanied by a processor-specific status description</td>
</tr>
<tr>
<td>0x1000</td>
<td>0.4096</td>
<td>Other info</td>
<td>Indicates some other informative condition, usually accompanied by a processor-specific status description</td>
</tr>
<tr>
<td>0x2000</td>
<td>0.8192</td>
<td>Cumulative result</td>
<td>Cumulative processing somewhere in the chain</td>
</tr>
<tr>
<td>64-bit hexadecimal int value shown in XStreamBrowser</td>
<td>VT_DECIMAL value returned from Status property</td>
<td>StatusDescription</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------------------------</td>
<td>-----------------------------------------------</td>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>0x4000 - 0x200000</td>
<td>1.6384 - 209.7152</td>
<td></td>
<td>reserved</td>
</tr>
<tr>
<td>0x400000</td>
<td>419.4304</td>
<td>Not an NRZ Eye</td>
<td>Not an NRZ Eye</td>
</tr>
<tr>
<td>0x800000</td>
<td>838.8608</td>
<td>Not an RZ Eye</td>
<td>Not an RZ Eye</td>
</tr>
<tr>
<td>0x10000000 - 0x80000000</td>
<td>1677.7216 - 214748.3648</td>
<td></td>
<td>reserved</td>
</tr>
<tr>
<td>0x1000000000</td>
<td>429496.7296</td>
<td>Inputs incompatible</td>
<td>Some incompatibility exists between inputs (e.g. units, frame, sample rate)</td>
</tr>
<tr>
<td>0x2000000000</td>
<td>858993.4592</td>
<td>Algorithm limits reached</td>
<td>Algorithm couldn't converge or some other algorithmic limitation reached.</td>
</tr>
<tr>
<td>0x4000000000</td>
<td>1717986.918</td>
<td>Bad settings</td>
<td>Combination of settings isn't correct.</td>
</tr>
<tr>
<td>0x8000000000</td>
<td>3435973.837</td>
<td>Too little data</td>
<td>Not enough data to accurately perform calculation.</td>
</tr>
<tr>
<td>0x1000000000</td>
<td>6871947.674</td>
<td>Too much data</td>
<td>Too much data to perform calculation.</td>
</tr>
<tr>
<td>0x200000000000</td>
<td>13743895.35</td>
<td>Requires uniform horz interval</td>
<td>Uniform horizontal interval required.</td>
</tr>
<tr>
<td>0x400000000000</td>
<td>27487790.69</td>
<td>Bad units</td>
<td>Incorrect or invalid units</td>
</tr>
<tr>
<td>0x800000000000</td>
<td>54975581.39</td>
<td>Data range too low</td>
<td>Range of data values is too close to the resolution (e.g. bad signal to noise ratio).</td>
</tr>
<tr>
<td>0x100000000000</td>
<td>109951162.8</td>
<td>Data undersampled</td>
<td>Sample rate too low</td>
</tr>
<tr>
<td>0x2000000000000</td>
<td>219902325.6</td>
<td>Poor statistics</td>
<td>Too few samples, e.g. to populate a data histogram to have enough statistics</td>
</tr>
<tr>
<td>0x4000000000000</td>
<td>439804651.1</td>
<td>Slow transition time</td>
<td>Transition time to slow, e.g. JTA time measurement accuracy for clock that requires fast edges.</td>
</tr>
<tr>
<td>0x8000000000000</td>
<td>879609302.2</td>
<td>Data resampled</td>
<td>Data is resampled</td>
</tr>
<tr>
<td>0x10000000000000</td>
<td>1759218604</td>
<td>Data interpolated</td>
<td>Data is interpolated; e.g. interpolating missing points in RIS</td>
</tr>
<tr>
<td>0x20000000000000</td>
<td>3518437209</td>
<td>Measurement scale imprecise</td>
<td>If all the data falls in the same histogram bin, one line for trend, one pixel for XY, etc...</td>
</tr>
<tr>
<td>0x40000000000000</td>
<td>7036874418</td>
<td>No data available</td>
<td>Data not available (e.g. processing inputs disconnected or clear sweeps on cumulative processing).</td>
</tr>
<tr>
<td>0x80000000000000</td>
<td>14073748836</td>
<td>Some accumulated results invalid</td>
<td>One or more results or values within the accumulated result were invalid and were skipped.</td>
</tr>
<tr>
<td>0x100000000000000</td>
<td>2814797671</td>
<td>Insufficient Memory</td>
<td>Memory limitations reached, attempted allocations failed.</td>
</tr>
</tbody>
</table>
ABOUT RESULTS

<table>
<thead>
<tr>
<th>64-bit hexadecimal int value shown in XStreamBrowser</th>
<th>VT_DECIMAL value returned from Status property</th>
<th>StatusDescription</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x2000000000000000</td>
<td>56294995342</td>
<td>Channel not active</td>
<td>Source channel inactive.</td>
</tr>
<tr>
<td>0x4000000000000000</td>
<td>1.1259E+11</td>
<td></td>
<td>use status description (custom string)</td>
</tr>
<tr>
<td>0x8000000000000000 - 0x8000000000000000</td>
<td></td>
<td>reserved</td>
<td></td>
</tr>
</tbody>
</table>

**StatusDescription**

Description:

**Example:** Description for each status code. See the above table.

**Sweeps**

Applies to: Digital, Histogram, Persist, Waveform, XY

Description: Number of sweeps used for results that are based on multiple sweeps, such as averages, histograms, eye diagrams, etc.

**Example:**

```vbnet
Dim Sweeps as Long
```

**Top**

Applies to: Histogram

Description: Horizontal coordinate of the rightmost of the two most populated histogram peaks. It is equivalent to the parameter `htop`.

**Example:**

```vbnet
Dim htop as Double
```

See the `HistogramProperties_Click` subroutine for a more complete example.

**UniformInterval**

Applies to: Digital

Description: Returns if the samples are evenly spaced in time. Currently always true.

**Example:**

```vbnet
Dim htop as Double
```
CHAPTER TWO

UpdateTime

Applies to: All Result interfaces.

Description: Indicates the time that particular result was most recently updated. Often, this property will show the same value as LastEventTime, but for traces such as memories (M1, M2, etc) this will be the time that the waveform was stored to the memory trace. Times are returned encoded as a currency value (VT_CY) within a variant; see description for FirstEventTime for decoding details.

Example:
```
Dim UpdateTime
Dim TimeString as String
TimeString = DecodeTimeProperty(UpdateTime)
```

See FirstEventTime for the code for the function DecodeTimeProperty, which is the example of decoding UpdateTime.

Value

Applies to: Param

Description: Value of a parameter or of a statistic in the measurement system. When the scope has no result, it will show "---" in the measure table. When this is displayed, the Value property is not accessible. Error handling should be employed to catch errors that may occur. See the example below for more information.

Example:
```
' Readout all elements of the measurement parameter for P1.
' Use the On Error Resume Next statement to handle situations
' where a measurement is not available, such as attempting to
' readback the frequency of a DC level, or trying to read the Sdev
' statistic when there is only 1 measurement. The scope will show
' "---" when there is no result to readback.

On Error Resume Next
Dim Value, Mean, Min, Max, Sdev, Num As Double
Value = app.measure.p1.out.Result.Value
Mean = app.measure.p1.Mean.Result.Value
Min = app.measure.p1.Min.Result.Value
Max = app.measure.p1.Max.Result.Value
Sdev = app.measure.p1.Sdev.Result.Value
Num = app.measure.p1.Num.Result.Value
```

ValueArray

Applies to: Param

Description: Retrieves a 1D array of values, typically used to return measurement results for mult-values parameters such as Period, Frequency, TIE@level, etc. ValueArray can also return the start time, stop time and status of each measurement taken in the sweep.

Arguments:

- numSamples as Long
  Default value: -1, retrieve all data
  Number of samples to retrieved
- startIndex as Long
  Default value: 0, first sample
  Index of the first sample to be retrieved.
- valueType as integer (enumerated)
ABOUT RESULTS

Default value: 1
Accepted values:

1 Readback parameter values
2 Readback start time of measurement
4 Readback stop time of measurement
8 Readback status value. Use this to determine if edge measurements are of positive or negative polarity

Example:
'T Readout all elements of the measurement parameter for P1.
'T Use the On Error Resume Next statement to handle situations where no measurements were not taken. On Error Resume Next
'T The scope will show' "---" when there is no result to readback

Const ROWOFFSET = 16
Const COLOFFSET = 2
Dim numValues As Long
Dim startIndex As Long
Dim valueType As Integer
Dim valArray

numValues = Cells(9, 5)
startIndex = Cells(10, 5)

'Get measurement values
valArray = app.measure.p1.out.Result.ValueArray(numValues, startIndex, 1)
'Get measurement start times
startTimes = app.measure.p1.out.Result.ValueArray(numValues, startIndex, 2)
'Get measurement stop times
stopTimes = app.measure.p1.out.Result.ValueArray(numValues, startIndex, 4)
'Get measurement status values (typically edge polarity)
statusVals = app.measure.p1.out.Result.ValueArray(numValues, startIndex, 8)

Dim Value, Mean, Min, Max, Sdev, Num As Double
For i = 0 To UBound(valArray)
    Cells(i + ROWOFFSET, COLOFFSET) = i
    Cells(i + ROWOFFSET, COLOFFSET + 1) = valArray(i)
    Cells(i + ROWOFFSET, COLOFFSET + 2) = startTimes(i)
    Cells(i + ROWOFFSET, COLOFFSET + 3) = stopTimes(i)
    Cells(i + ROWOFFSET, COLOFFSET + 4) = statusVals(i)
Next

VerticalFrameStart

Applies to: Digital, Histogram, Persist, Waveform, XY

Description: Vertical coordinate of the bottom edge of the graticule containing the trace.

Example:
Dim YFrameStart As Double
CHAPTER TWO

Overview

**VerticalFrameStop**
Applies to: Digital, Histogram, Persist, Waveform, XY
Description: Vertical coordinate of the top edge of the graticule containing the trace.
Example:
```vbscript
Dim YFrameStop As Double
```

**VerticalMaxPossible**
Applies to: Waveform
Description: Returns the maximum voltage that can be returned.
Example:
```vbscript
Dim VerticalMaxPossible As Double
```

**VerticalMinPossible**
Applies to: Waveform
Description: Returns the minimum voltage that can be returned.
Example:
```vbscript
Dim VerticalMinPossible As Double
```

**VerticalOffset**
Applies to: Persist, Waveform
Description:
Potential difference between ground and the center of the screen. With VerticalOffset = +50 mV, the center of the screen represents -50 mV: with an offset of -21 mV, the center represents +21 mV. (I.e. centerline voltage + VerticalOffset = 0)
Example:
```vbscript
Dim VerticalOffset As Double
```

**VerticalPerRow**
Applies to: Persist
Description: Returns the increment of the vertical coordinate between rows (typically in volts). Use VerticalPerRow to determine the voltage information for each row of the DataArray.
Example:
```vbscript
Dim VerticalPerRow As Double
VerticalPerRow = app.SDA.Eye.Out.Result.VerticalPerRow
```
ABOUT RESULTS

**VerticalPerStep**
Applies to: Waveform
Description: Smallest step size in the numerical values that can be read out from the DataArray, which utilized 16 bit signed integer values. Note that the vertical range is almost exactly $65536 \times \text{VerticalPerStep}$. (See VerticalMaxPossible and VerticalMinPossible.)
Example:
```vba
Dim VerticalPerStep as Double
```

**VerticalResolution**
Applies to: Param, Waveform
Description: Vertical resolution of the Y coordinate, which is the actual smallest difference that can be practically resolved. Using averaging can improve the resolution by the square root of the number of sweeps in the average. For example, if 16 averages are set via pre-processor averaging or by using the Average math function, the resolution is improved by a factor of 4. For 100 sweeps it improves by a factor of 10.
Example:
```vba
Dim VerticalResolution as Double
```

**VerticalUnits**
Applies to: Histogram, Param, Persist, Waveform
Description: Units used for the vertical axis. Typically V for volts, but other units are possible, such as "A" for amps when using a current probe. When selecting to change units when using the Rescale math function, a variety of other chooses for units are available.
Example:
```vba
Dim VerticalUnits as String
```

**XFrameStart**
Applies to: XY
Description: Coordinate of the left edge of the XY graticule.
Example:
```vba
Dim XFrameStart As Double
XFrameStart = app.Math.XY.Out.Result.XFrameStart
```

**XFrameStop**
Applies to: XY
Description: Coordinate of the right edge of the XY graticule.
Example:
```vba
Dim XFrameStop As Double
XFrameStop = app.Math.XY.Out.Result.XFrameStop
```
**CHAPTER TWO**

**Overview**

**XMaxPossible**
Applies to: XY
Description: Maximum possible value of the X coordinate

**Example:**
```
Dim XMaxPossible As Double
XMaxPossible = app.Math.XY.Out.Result.XMaxPossible
```

**XMinPossible**
Applies to: XY
Description: Minimum possible value of the X coordinate

**Example:**
```
Dim XMinPossible As Double
XMinPossible = app.Math.XY.Out.Result.XMinPossible
```

**XOffset**
Applies to: XY
Description: Potential difference between ground and the horizontal center of the XY grid. For example, with VerticalOffset of the X coordinate's source trace = +50 mV, the center of the screen represents -50 mV: with an offset of -21 mV, the center represents +21 mV. (I.e. centerline voltage + VerticalOffset = 0)

**Example:**
```
Dim XOffset As Double
XOffset = app.Math.XY.Out.Result.XOffset
```

**XPerStep**
Applies to: XY
Description: Smallest step size in the numerical values that can be read out from the DataArray utilizing 16 bit signed integer values. Note that the X range is just about 65536 * XPerStep. (See XMaxPossible and XMinPossible.)

**Example:**
```
Dim XPerStep As Double
XPerStep = app.Math.XY.Out.Result.XPerStep
```

**XResolution**
Applies to: XY
Description: Vertical resolution of the X coordinate, which is the actual smallest difference that can be practically resolved. Using averaging can improve the resolution by the square root of the number of sweeps in the average. For example, if 16 averages are set via pre-processor averaging or by using the Average math function, the resolution is improved by a factor of 4. For 100 sweeps it improves by a factor of 10.

**Example:**
```
Dim XResolution As Double
XResolution = app.Math.XY.Out.Result.XResolution
```
ABOUT RESULTS

XUnits
Applies to: XY
Description: Units of the X coordinate. Typically V for Volts, unless a current probe is in use or if the Rescale function is being used to change the trace’s units.

Example:
Dim XUnits As String
XUnits = app.Math.XY.Out.Result.XUnits

YFrameStart
Applies to: XY
Description: Coordinate of the bottom edge of the XY graticule.

Example:
Dim YFrameStart As Double
YFrameStart = app.Math.XY.Out.Result.YFrameStart

YFrameStop
Applies to: XY
Description: Coordinate of the top edge of the XY graticule.

Example:
Dim YFrameStart As Double
YFrameStart = app.Math.XY.Out.Result.YFrameStart

YMaxPossible
Applies to: XY
Description: Minimum possible value of the Y coordinate.

Example:
Dim YMaxPossible As Double
YMaxPossible = app.Math.XY.Out.Result.YMaxPossible

YMinPossible
Applies to: XY
Description: Minimum possible value of the Y coordinate.

Example:
Dim YMinPossible As Double
YMinPossible = app.Math.XY.Out.Result.YMinPossible

YOffset
Applies to: XY
Description: Potential difference between ground and the vertical center of the XY grid. For example, with VerticalOffset of the Y coordinate’s source trace = +50 mV, the center of the screen represents -50 mV: with an offset of -21 mV, the center represents +21 mV. (I.e. centerline voltage + VerticalOffset = 0)

Example:
Dim YOffset As Double
YOffset = app.Math.XY.Out.Result.YOffset
**YPerStep**

Applies to: XY

Description: Smallest step size in the numerical values that can be read out from the DataArray utilizing 16 bit signed integer values. Note that the Y range is just about 65536 * YPerStep. (See YMaxPossible and YMinPossible.)

Example:
```
Dim YPerStep As Double
YPerStep = app.Math.XY.Out.Result.YPerStep
```

**YResolution**

Applies to: XY

Description: Vertical resolution of the Y coordinate, which is the actual smallest difference that can be practically resolved. Using averaging can improve the resolution by the square root of the number of sweeps in the average. For example, if 16 averages are set via pre-processor averaging or by using the Average math function, the resolution is improved by a factor of 4. For 100 sweeps it improves by a factor of 10.

Example:
```
Dim YResolution As Double
YResolution = app.Math.XY.Out.Result.YResolution
```

**YUnits**

Applies to: XY

Description: Units of the Y coordinate. Typically V for Volts, unless a current probe is in use or if the Rescale function is being used to change the trace’s units.

Example:
```
Dim YUnits As String
YUnits = app.Math.XY.Out.Result.YUnits
```
This is the root of the automation hierarchy, all other nodes are accessed from this point.

<table>
<thead>
<tr>
<th>Method/Property</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoSetup</td>
<td>Action</td>
</tr>
<tr>
<td>ClearSweeps</td>
<td>Action</td>
</tr>
<tr>
<td>Exit</td>
<td>Action</td>
</tr>
<tr>
<td>FirmwareVersion</td>
<td>String</td>
</tr>
<tr>
<td>Height</td>
<td>Property</td>
</tr>
<tr>
<td>HideClock</td>
<td>Bool</td>
</tr>
<tr>
<td>InstrumentID</td>
<td>String</td>
</tr>
<tr>
<td>InstrumentModel</td>
<td>String</td>
</tr>
<tr>
<td>Left</td>
<td>Property</td>
</tr>
<tr>
<td>Maximize</td>
<td>Action</td>
</tr>
<tr>
<td>Minimize</td>
<td>Action</td>
</tr>
<tr>
<td>OperationMode</td>
<td>Enum</td>
</tr>
<tr>
<td>Quit()</td>
<td>Method</td>
</tr>
<tr>
<td>ResetPreferences</td>
<td>Action</td>
</tr>
<tr>
<td>Restore</td>
<td>Action</td>
</tr>
<tr>
<td>SetToDefaultSetup</td>
<td>Action</td>
</tr>
<tr>
<td>Shutdown</td>
<td>Action</td>
</tr>
<tr>
<td>Sleep([in] double timeoutMilliseconds)</td>
<td>Method</td>
</tr>
<tr>
<td>Top</td>
<td>Property</td>
</tr>
<tr>
<td>TouchScreenEnable</td>
<td>Bool</td>
</tr>
<tr>
<td>WaitUntilIdle([in] double timeoutSeconds)</td>
<td>Method</td>
</tr>
<tr>
<td>Width</td>
<td>Property</td>
</tr>
<tr>
<td>Windowed</td>
<td>Action</td>
</tr>
<tr>
<td>WindowState</td>
<td>Property</td>
</tr>
</tbody>
</table>

**Example**

```
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Popup a dialog containing the instrument model
MsgBox "Model is: " & app.InstrumentModel
```

**InstrumentModel**

**Range**

Any number of characters

**Description**

Queries the model number of the instrument.

**Example**

```
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Present the model number of the instrument.
MsgBox app.InstrumentModel
```
Chapter Three

Control Reference

InstrumentID

<table>
<thead>
<tr>
<th>Range</th>
<th>Any number of characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Reads the complete ID of the instrument in the format: &quot;LECROY,WM8500,WM000001,0.0.0&quot;, which includes the maker, the instrument model number, the serial number, and the version number.</td>
</tr>
</tbody>
</table>

Example

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Present the ID of the instrument.
MsgBox app.InstrumentID

FirmwareVersion

<table>
<thead>
<tr>
<th>Range</th>
<th>Any number of characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Queries the firmware version of the instrument in the form - &quot;1.0.0 (build 12345)&quot;</td>
</tr>
</tbody>
</table>

Example

' Microsoft Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Query the firmware version number of the instrument.
MsgBox "Firmware Version is: " + app.FirmwareVersion

Shutdown

| Description | Shuts down the instrument. It will prompt the user with an 'Are you sure?' dialog before shutting down. Note that until the user responds to the dialog, control via Automation will be blocked. |

Example

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Shut down the instrument with a confirmation prompt.
app.Shutdown

Exit

| Description | Equivalent to app.Quit() method. |

916435 RevA
Chapter Three

Control Reference

Maximize

Description
Maximize the instrument window to fill the underlying desktop.
Equivalent to app.WindowState = 1

Minimize

Description
Minimizes the instrument window to reveal the underlying desktop. It will display a small window in the bottom right corner of the display, which when clicked will restore the window to full-screen mode. To programmatically restore the window refer to the app.WindowState control.

Example

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Minimize the instrument display.
app.Minimize

Windowed

Description
Places the instrument application in windowed mode (as opposed to full-screen mode). Places the application in the upper-part of the display screen with a sizable border.

Example

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the instrument display into the windowed mode.
app.Windowed

Restore

Description
Restore the instrument display to its position and size before the last minimize request.
SetToDefaultSetup

Description
Restores the instrument setup to its default state. Note that certain settings will not be restored to the default state. These are the user preferences, such as the current remote communications port, and the color settings, which may be reset, if required, using the ResetPreferences action.

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Restore the instrument to its default state.
app.SetToDefaultSetup

AutoSetup

Description
Starts an AutoSetup operation. When input channels are visible, AutoSetup operates only on those visible channels. If no channels are visible, all channels are affected by AutoSetup. With more than one channel visible, the first visible channel in numerical order, that has a detectable signal applied to it, is automatically set up for edge triggering.

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Start an Auto-Setup process.
app.AutoSetup

ClearSweeps

Description
Clears all accumulated sweeps for all subsystems. These include Channel Pre-Processing, Math, Measure, and Display Persistence. Note that subsystem-specific clear sweeps controls are also available. For the details please refer to the ClearSweeps control for each subsystem.

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Clear all accumulated sweeps for all subsystems.
app.ClearSweeps
HideClock

Description
Hides/Shows the clock that resides in the lower-right corner of the display of the instrument.

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Hide the clock for 3 seconds.
app.HideClock = True
app.Sleep(3000)
app.HideClock = False

TouchScreenEnable

Description
Sets/Queries the state of the touch-screen enable control. This is equivalent to the front-panel Touch Screen button.

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Disable touch-screen if it is enabled.
if app.TouchScreenEnable = True then
    app.TouchScreenEnable = False
End if

ResetPreferences

Description
Resets all scope preferences to their default states. The set includes the current remote communications port, the color palette settings, etc. but does not include the main DSO controls such as V/Div, T/Div, etc. These main instrument controls can be reset using the SetToDefaultSetup control.

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Reset all instrument preferences.
app.ResetPreferences
Chapter Three

OperationMode

Enum

Description
Sets the operating mode of the WaveExpert. Each mode affects the horizontal and vertical menus, as well as the display mode, as appropriate for the selected mode of operation.
Not present on other scope families.

Values

<table>
<thead>
<tr>
<th>OperationMode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eye</td>
<td>Eye Diagram mode. Sets sequential timebase, and infinite persistence.</td>
</tr>
<tr>
<td>Scope</td>
<td>Traditional 'Scope' mode.</td>
</tr>
<tr>
<td>TDR</td>
<td>Time Domain Reflectometry (TDR) mode.</td>
</tr>
</tbody>
</table>

Quit()

Method

Description
Closes the instrument application. The instrument will prompt the user with an 'Are you sure?' dialog before closing down. Note that until the user responds to the dialog, control via Automation will be blocked.

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Quit the instrument application with a confirmation prompt.
app.Quit

WindowState

Property

Description
Sets/Queries the state of the PC window used by the instrument display.
0    windowed
1    full screen
2    minimized

Trying to set values greater than 2 or less than 0 will result in the value 0 (windowed) being set.

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the instrument window state to windowed.
app.WindowState = 0
Chapter Three

**Width**

**Description**
Sets/Queries the width in pixels of the instrument display on the PC screen.

**Example**

```
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the width of the instrument window to 800 pixels.
app.Width = 800
```

**Height**

**Description**
Sets/Queries the height in pixels of the instrument display on the PC screen.

**Example**

```
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the height of the instrument window to 400 pixels.
app.Height = 400
```

**Top**

**Description**
Sets/Queries the position in pixels of the top edge of the instrument display on the PC screen. The position is measured downwards from the top of the screen to the top of the instrument window.

**Example**

```
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the position of the top edge of the instrument window to 100 pixels.
app.Top = 100
```

**Left**

**Description**
Sets/Queries the position in pixels of the left edge of the instrument display on the PC screen. The position is measured from the left edge of the screen to the left edge of the instrument window.

**Example**

```
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the position of the left edge of the instrument window to 100 pixels.
app.Left = 100
```
**WaitUntilIdle([in] double timeoutSeconds)**

**Method**

**Description**
Waits until either the application is idle or the specified timeout expires, specified in seconds. This evaluates to True if the application completes before the timeout expires, and to False if a timeout occurs.

When Trigger mode is Auto or Run, the application is never Idle. In this case the call to WaitUntilIdle returns after the next acquisition and any configured processing.

**Example**

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Wait with a timeout of five seconds.
app.WaitUntilIdle(5)

**Sleep([in] double timeoutMilliseconds)**

**Method**

**Description**
Causes the main execution thread of the instrument application to sleep for the specified time period, defined in milliseconds.

**Example**

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

MsgBox "Sleeping for 10 seconds..."
app.Sleep(10000)
MsgBox "Sleep finished"

---

**ACQUISITION**

This group of variables controls the input channels C1, C2, C3 and C4, the timebase, the trigger, and the Aux Output.

Names of the form app.Acquisition.Channels.xxxx are aliases of simpler names which are described in this section of the manual. Examples of alias pairs are as follows -

- app.Acquisition.Channels("Cx") is equivalent to app.Acquisition.Cx
- app.Acquisition.Channels(1) is equivalent to app.Acquisition.C1


**Method**

**Calibrate**

**Action**

**CalNeeded**

**Integer**

**ClearSweeps**

**Action**

**HorOffset**

**Double**

**TriggerMode**

**Enum**

**Description**
Sets/Queries the trigger mode, using values from the following list -
Auto, Norm, Normal, Single, Stopped.
Auto: After a timeout, if a real hardware trigger is not received, then force a trigger so there are automatically lots of updates.

Normal: Accepts triggers as rapidly as the system permits, but likewise will wait "forever" for a trigger, without updating anything.

Single: Arm the acquisition system to acquire once, and do not rearm automatically after. Once a trigger is received and the data processed, the instrument finishes in the "Stopped" state.

Stop: Finishes the current acquisition and does not re-arm.

**Example**

```vbscript
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Place the instrument in stopped mode and take one acquisition.
app.Acquisition.TriggerMode = "Stopped"
app.Acquisition.Acquire(5)
```

**Values**

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto</td>
<td>Auto-trigger</td>
</tr>
<tr>
<td>Normal</td>
<td>Normal Trigger</td>
</tr>
<tr>
<td>Single</td>
<td>Single Trigger</td>
</tr>
<tr>
<td>Stopped</td>
<td>No trigger possible, Stopped</td>
</tr>
</tbody>
</table>

**HorOffset**

**Range** From -2.72e-008 to -1.72e-008 step 2e-011

**Description**

same as "app.Acquisition.Horizontal.HorOffset.cvar"

**Calibrate**

**Action**

**Description**

Initiates a full calibration of the acquisition system of the instrument.

**Example**

```vbscript
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Start a calibration.
app.Acquisition.Calibrate
```
Chapter Three

Control Reference

CalNeeded

<table>
<thead>
<tr>
<th>Range</th>
<th>From -2147483648 to 2147483647 step 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Query: Indicates whether calibration is required or not.</td>
</tr>
<tr>
<td></td>
<td>Based on hexadecimal bit value, it provides following information:</td>
</tr>
<tr>
<td></td>
<td>0x00000001: Front end calibration is required</td>
</tr>
<tr>
<td></td>
<td>0x00000002: Digitizers delay matching is required</td>
</tr>
<tr>
<td></td>
<td>0x00000004: Digitizers gain matching is required</td>
</tr>
<tr>
<td></td>
<td>0x00000008: Trigger level calibration is required</td>
</tr>
<tr>
<td></td>
<td>0xFFFFFFFF(-1): All of above calibrations are required</td>
</tr>
</tbody>
</table>

ClearSweeps

| Description | Resets any accumulated average data or persistence data for channel waveforms (C1..C4). Valid only when one or more channels have waveform averaging or persistence enabled in their pre-processing settings. Note that an average may be reset on an individual basis using app.Acquisition.Cx.ClearSweeps control. |

Example

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Clear accumulated sweeps for channels C1...C4
app.Acquisition.ClearSweeps

' Clear accumulated sweeps for only C1

Acquire([in] double timeoutSeconds, [in] long bForceTriggerOnTimeout)

| Description | Action/Query. Takes a single acquisition. The first of the two arguments specifies a timeout; the second, which is optional, specifies whether or not to force a trigger when the timeout occurs. Evaluates to True if a trigger occurred, or False if a timeout occurred. |

Example

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Start an acquisition, wait for up to 5 seconds for a trigger event, force a software trigger if a hardware trigger is not detected before the 5 second timeout expires.
triggerDetected = app.Acquisition.Acquire(5, true)

CHANNELS

This group of variables controls the acquisition channels C1, C2, C3 and C4.

Names of the form app.Acquisition.Channels.xxxx are aliases of simpler names which are described in the section of the
manual which is devoted to app.Acquisition. Examples of alias pairs are as follows -
  app.Acquisition.Channels("Cx") is equivalent to app.Acquisition.Cx
  app.Acquisition.Channels(1) is equivalent to app.Acquisition.C1

Example
Set app = CreateObject("LeCroy.XStreamDSO")
For X = 1 To 4
  app.Acquisition.Channels(X).VerScale = 0.2
Next

CX    app.Acquisition.Cx

This group of variables controls the input channels C1, C2, C3 and C4.

Names of the form app.Acquisition.Channels.xxx are aliases of simpler names which are described in the section of the manual which is devoted to app.Acquisition. Examples of alias pairs are as follows -
  app.Acquisition.Channels("Cx") is equivalent to app.Acquisition.Cx

<table>
<thead>
<tr>
<th>AverageSweeps</th>
<th>Integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>CalibrateScope</td>
<td>Action</td>
</tr>
<tr>
<td>ClearSweeps</td>
<td>Action</td>
</tr>
<tr>
<td>DarkCalLevel</td>
<td>Double</td>
</tr>
<tr>
<td>Deskew</td>
<td>Double</td>
</tr>
<tr>
<td>FindScale</td>
<td>Action</td>
</tr>
<tr>
<td>InterpolateType</td>
<td>Enum</td>
</tr>
<tr>
<td>Invert</td>
<td>Bool</td>
</tr>
<tr>
<td>LabelsPosition</td>
<td>String</td>
</tr>
<tr>
<td>LabelsText</td>
<td>String</td>
</tr>
<tr>
<td>MaskOn</td>
<td>Bool</td>
</tr>
<tr>
<td>Persisted</td>
<td>Bool</td>
</tr>
<tr>
<td>PersistenceSaturation</td>
<td>Integer</td>
</tr>
<tr>
<td>PersistenceTime</td>
<td>Enum</td>
</tr>
<tr>
<td>PodModel</td>
<td>String</td>
</tr>
<tr>
<td>PodType</td>
<td>Enum</td>
</tr>
<tr>
<td>ProbeAttenuation</td>
<td>Double</td>
</tr>
<tr>
<td>ProbeName</td>
<td>String</td>
</tr>
<tr>
<td>ShowLastTrace</td>
<td>Bool</td>
</tr>
<tr>
<td>TDREdgeTime</td>
<td>Double</td>
</tr>
<tr>
<td>TDRMeasurementType</td>
<td>Enum</td>
</tr>
<tr>
<td>TDROn</td>
<td>Bool</td>
</tr>
<tr>
<td>TDRPolarity</td>
<td>Enum</td>
</tr>
<tr>
<td>TDRZ0</td>
<td>Double</td>
</tr>
<tr>
<td>UseGrid</td>
<td>String</td>
</tr>
<tr>
<td>VerOffset</td>
<td>Double</td>
</tr>
<tr>
<td>VerScale</td>
<td>DoubleLockstep</td>
</tr>
<tr>
<td>VerScaleVariable</td>
<td>Bool</td>
</tr>
</tbody>
</table>
Chapter Three

Control Reference

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>Bool</td>
</tr>
<tr>
<td>ViewLabels</td>
<td>Bool</td>
</tr>
<tr>
<td>XTolerance</td>
<td>Integer</td>
</tr>
<tr>
<td>YTolerance</td>
<td>Integer</td>
</tr>
</tbody>
</table>

**Example**

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Setup Channel C1
app.Acquisition.C1.VerScale = 0.5
app.Acquisition.C1.VerOffset = 0.0
app.Acquisition.C1.Coupling = "DC50"

' Setup Channel C2
app.Acquisition.C2.VerScale = 0.1

**View**

**Description**
Sets/Queries the channel's 'Viewed' state. When True the channel waveform is displayed on one of the display graticules. Note that even when a channel is not visible it may be used as a source for Math, Measure, etc.

**Example**

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Make channel C3 visible.
app.Acquisition.C3.View = True

**ClearSweeps**

**Description**
Clears all accumulated average data and persistence data for this channel. See app.Acquisition.ClearSweeps for a control that clears accumulated data for channels 1..4, or app.ClearSweeps for a control that clears accumulated data for all subsystems (including Math/Measure/Display, etc.)

**Example**

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Reset channel C1

' Reset channels C1..C4
app.Acquisition.ClearSweeps
UseGrid

<table>
<thead>
<tr>
<th>Range</th>
<th>Any number of characters</th>
</tr>
</thead>
</table>

**Description**
Sets/Queries the graticule on which the trace is displayed. Typical values include:
- YT1..YT8: one of the YT graticules used in Single, Dual, Quad, and Octal display modes.
- NotOnGrid: not displayed on any graticule.

**Example**

```vbscript
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Switch to dual grid mode, place C1 on the lower graticule
' and C2 on the upper graticule.
app.Display.GridMode = "Dual"
app.Acquisition.C1.UseGrid = "YT2"
app.Acquisition.C2.UseGrid = "YT1"
```

Persisted

<table>
<thead>
<tr>
<th>Range</th>
<th>Bool</th>
</tr>
</thead>
</table>

**Description**
Sets/Queries the persisted state of the waveform. If the Display.LockPersistence control is set to 'AllLocked' then the persisted state of all displayed waveforms will be the same. If the Display.LockPersistence control is set to 'PerTrace' then the persisted state of each waveform may be independently controlled.

**Example**

```vbscript
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set persistence on for trace C1
app.Display.LockPersistence = "PerTrace"
app.Acquisition.C1.Persisted = True
```

**PersistenceSaturation**

<table>
<thead>
<tr>
<th>Range</th>
<th>From 0 to 100 step 1</th>
</tr>
</thead>
</table>

**Description**
Sets/Queries the saturation threshold for persisted waveforms. All information at this level or above will be recorded with the same color or intensity. See the general description above for a discussion of the locked and unlocked persistence modes.

**Example**

```vbscript
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the persistence saturation level for trace C1.
app.Acquisition.C1.PersistenceSaturation = 60
```
**ShowLastTrace**

**Description**
Sets/Queries the state of the Show Last Trace control. If True then when this trace is displayed in persistence mode the last acquired waveform will be superimposed on the accumulating persistence map.

See the general description above for a discussion of the locked and unlocked persistence modes.

**Example**
```
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Makes the last acquired trace invisible for the persistence trace of channel C1.
app.Acquisition.C1.ShowLastTrace = False
```

**PersistenceTime**

**Description**
Sets/Queries the state of the Persistence Time control. Controls the persistence decay time for this trace. See the general description above for a discussion of the locked and unlocked persistence modes.

**Example**
```
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the persistence time for the persistence trace of channel C1 to 10 seconds.
app.Acquisition.C1.PersistenceTime = "10s"
```

**Values**

<table>
<thead>
<tr>
<th>Value</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5s</td>
<td></td>
</tr>
<tr>
<td>10s</td>
<td></td>
</tr>
<tr>
<td>1s</td>
<td></td>
</tr>
<tr>
<td>20s</td>
<td></td>
</tr>
<tr>
<td>2s</td>
<td></td>
</tr>
<tr>
<td>5s</td>
<td></td>
</tr>
<tr>
<td>Infinite</td>
<td></td>
</tr>
</tbody>
</table>

**LabelsText**

String

**Range**

Any number of characters
**LabelsPosition**

**Range**  
Any number of characters

**Description**  
Sets / Queries the horizontal position of the label attached to the acquisition trace Cx. The unit of measurement is the unit of the horizontal scale. The measurement is made from the trigger point. Note that this control is a string, not a numeric value. This allows multiple labels to be positioned, as shown in the example below.

**Example**

```vbnet
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Add a couple of labels to trace C1, one at 0ns, and one at 55ns
app.SetToDefaultSetup
app.Acquisition.C1.ViewLabels = True
app.Acquisition.C1.LabelsPosition = "0.0,55e-9"
app.Acquisition.C1.LabelsText = "Hello, World"
```

**ViewLabels**

**Description**  
Sets/Queries whether the user-defined labels for the trace are visible.  
See Also: LabelsPosition and LabelsText controls.

**Example**

```vbnet
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Show the user-defined label for trace C2.
app.Acquisition.C2.ViewLabels = True
```

**FindScale**

**Description**  
Starts FindScale operation for this channel. This operation will adjust channel's v/div and offset control such that the signal is visible on the screen with in +/- 3 div.

**Example**

```vbnet
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Find vertical scale of channel 1
app.Acquisition.C1.FindScale
```
Chapter Three

Control Reference

**ProbeAttenuation**

**Range**
From 1e-006 to 10000 step 1e-006

**Description**
Sets/Queries the probe attenuation. The probe attenuation is the factor by which the signal is made smaller, for example, 10 means that the probe divides by 10, and is referred to as a ÷10 probe. Note that certain passive probes may be marked as 'x10', even though they actually divide the input signal by a factor of 10.

**Example**

```
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the probe attenuation for channel C1 to 100
app.Acquisition.C1.ProbeAttenuation = 100
```

**ProbeName**

**Range**
Any number of characters

**Description**
Queries the name of connected probe.

**VerScale**

**Range**
From 0.001 to 1 step 0.0005, locked to 1 2 5, fine grain allowed=true, on=false

**Description**
Sets/Queries the vertical scale (in Volts/Division) of an input channel. When variable gain (VerScaleVariable control) is disabled, the control will clip values to a 1..2..5 sequence. When variable gain is enabled, the setting resolution lies in the range 1% to 2%, depending upon the numerical value.

**Example**

```
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set C1 to a scale of 250mV/Div in Variable Scale mode
app.Acquisition.C1.VerScaleVariable = True
app.Acquisition.C1.VerScale = 0.25
```
VerScaleVariable

**Description**
Sets/Queries the state of the variable vertical scale control for channel Cx. When the variable scale is enabled, the setting resolution lies in the range 1% to 2%, depending on the numerical value. If a knowledge of the exact value is important, the value should be read back after a setting has been made.

**Example**

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the variable vertical scale for C1 to On.
app.Acquisition.C1.VerScaleVariable = True

VerOffset

**Range** From -1 to 1 step 0.001

**Description**
Sets/Queries the vertical offset of input channel Cx. The setting resolution in volts lies in the range 0.25% to 0.5%, depending on the numerical value. Note that the available offset range is dependent upon the current V/Div setting, and also the instrument model.

**Example**

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the vertical offset for C1 to 10 mV.
app.Acquisition.C1.VerOffset = 0.01

AverageSweeps

**Range** From 1 to 1000000 step 1

**Description**
Sets/Queries the number of averaging sweeps for input channel Cx. This is distinct from the math function app.Math.Fx. If the number of sweeps is 1 (the default value), the data will not be averaged.

**Example**

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the number of sweeps for channel C1 to 25.
app.Acquisition.C1.AverageSweeps = 25
InterpolateType

Description
Sets/Queries the type of interpolation used for input channel Cx. Note that Sinx/x interpolation increases the size of the trace by a factor of 10, beware when using this option with long records.

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the interpolation for channel C3 to (sin x)/x
app.Acquisition.C3.InterpolateType = "Sinxx"

Values

<table>
<thead>
<tr>
<th>Values</th>
<th>Linear interpolation</th>
<th>Sinx/x interpolation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sinxx</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Invert

Description
Sets/Queries whether input channel Cx is inverted.

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set channel C2 to be inverted.
app.Acquisition.C2.Invert = True

Deskew

Description
Sets/Queries the deskew of input channel Cx to produce a required alignment with another trace.

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

DarkCalLevel

Description
Set/Query the Dark Cal Level, the residual power measured by the optical head with no input applied (dark input). Used only by the extinction ratio measurement. Units are Micro-Watts (uW)
Chapter Three

Control Reference

CalibrateScope

Description
This control will initiate DC Calibration of modules. Disconnect the inputs from all plugged in Modules before starting calibration process.

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Start calibration of modules
app.Acquisition.C1.CalibrateScope

TDROn

Description
This control is applicable in TDR operating mode only. This control turns ON or OFF TDR pulse for given channel.

TDRPolarity

Description
This control is applicable in TDR operating mode only. This variable controls polarity of TDR pulse.

Values

<table>
<thead>
<tr>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neg</td>
<td>Negative Pulse</td>
</tr>
<tr>
<td>Pos</td>
<td>Positive Pulse</td>
</tr>
</tbody>
</table>

TDREdgeTime

Range
From 2e-011 to 2e-010 step 1e-012

Description
This control is used for reducing edge time of TDR pulse. The reduced edge time is achieved by using software low pass Filter. Note: The default TDR edge time is 20 pS.
Chapter Three

Control Reference

TDRMeasurementType

**Enum**

**Description**
This control is applicable in TDR operating mode only. It defines unit of TDR signal.

**Values**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohm</td>
<td></td>
</tr>
<tr>
<td>Percent</td>
<td></td>
</tr>
<tr>
<td>Reactance</td>
<td></td>
</tr>
<tr>
<td>Volt</td>
<td></td>
</tr>
</tbody>
</table>

TDRZ0

**Double**

**Range**
From 0 to 1000 step 0.1

**Description**
Characteristic Impedance for TDR medium

**Example**

```
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the characteristic impedance C1 to 50 ohms.
app.Acquisition.C1.TDRZ0 = "50"
```

MaskOn

**Bool**

**Description**
In Eye mode operation, this control turns on and off mask for given channel.

XTolerance

**Integer**

**Range**
From 0 to 100 step 1

**Description**
In Eye mode operation, this variable controls X-axis(horizontal) tolerance during Mask testing

YTolerance

**Integer**

**Range**
From 0 to 100 step 1

**Description**
In Eye mode operation, this variable controls Y-axis(vertical) tolerance during Mask testing
PodModel

**Description**
This control reflects the model number of the Module.

**Values**

<table>
<thead>
<tr>
<th>PodModel</th>
<th>String</th>
</tr>
</thead>
<tbody>
<tr>
<td>PodModel</td>
<td>Any number of characters</td>
</tr>
</tbody>
</table>

PodType

**Description**
This control reflects the type of the Module.

**Values**

<table>
<thead>
<tr>
<th>PodType</th>
<th>Enum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical</td>
<td>The module has an electrical signal input</td>
</tr>
<tr>
<td>ElectricalTDR</td>
<td>The module has TDR capabilities</td>
</tr>
<tr>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Optical</td>
<td>The module has an optical signal input</td>
</tr>
</tbody>
</table>

RESULT

Properties of the type xxxx.Out.Result.yyyy are those of the last completed acquisition. They are not affected if other controls are changed after that acquisition was completed. This distinction between "Out.Result" properties and other controls is most important when the trigger mode is Single or Stopped. You should treat "Out.Result" properties as read-only.

Several of these properties mention the 'frame', this is the term used to describe the visible portion of the trace, which is generally smaller than the acquired waveform. The frame could be used for example to display a 500pt. window onto a 1Mpt. Trace, or vertically it could be used to show the 'center' 10mV of a 100mV pk trace.

For a full overview of the properties of waveform (or other ) results, please see Chapter 1.

HORIZONTAL

This group of variables controls the timebase, the sampling, and the trigger delay.

<table>
<thead>
<tr>
<th>AcquisitionDuration</th>
<th>Double</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISStrobeFreq</td>
<td>Double</td>
</tr>
<tr>
<td>FindBitRate</td>
<td>Action</td>
</tr>
<tr>
<td>FPGAStatus</td>
<td>Register</td>
</tr>
<tr>
<td>HorOffset</td>
<td>Double</td>
</tr>
<tr>
<td>HorScale</td>
<td>DoubleLockstep</td>
</tr>
<tr>
<td>HorScaleVariable</td>
<td>Bool</td>
</tr>
<tr>
<td>HorUnits</td>
<td>String</td>
</tr>
<tr>
<td>MaxSamples</td>
<td>DoubleLockstep</td>
</tr>
<tr>
<td>NumPoints</td>
<td>Integer</td>
</tr>
</tbody>
</table>
### HorScale

**Range**  
From 1e-012 to 0.001 step 1e-011, locked to 1 2 5, fine grain allowed=true, on=false

**Description**  
Sets/Queries the horizontal scale in time per division.

**Example**

```vbnet
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the horizontal acquisition scale to 200 ns/div.
app.Acquisition.Horizontal.HorScale = 2.0e-7
```

### HorOffset

**Range**  
From -1.00122e-005 to -1.22e-008 step 2e-011

**Description**  
Sets/Queries the horizontal position of the trigger time, relative to the origin set by HorOffsetOrigin, in seconds. Positive to the right, negative to the left. The setting resolution is about 1% to 2&.

**Example**

```vbnet
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the horizontal trigger offset to 200 ns.
app.Acquisition.Horizontal.HorOffset = 2.0e-7
```

### HorUnits

**Range**  
Any number of characters

**Description**  
Queries the units in which the horizontal scale is measured.

**Example**

```vbnet
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Obtain the units of the horizontal scale.
HorizUnit = app.Acquisition.Horizontal.HorUnits
```
NumPoints

**Range**  From 2 to 512000000 step 1

**Description**
Queries the number of samples in the current setting of the acquisition memory. For sequence mode, this refers to the number of samples per segment, not to the number in the complete set. Use MaxSamples to limit the number of samples acquired.

**Example**

```vbscript
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Obtain the number of points being used in the acquisition memory.
NumberOfPoints = app.Acquisition.Horizontal.NumPoints
MsgBox NumberOfPoints
```

TimePerPoint

**Range**  From 5e-015 to 1e+012 step 1e-013

**Description**
Queries the time interval between successive samples in the acquisition.

**Example**

```vbscript
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Obtain the time per point of the acquisition.
timePerPt = app.Acquisition.Horizontal.TimePerPoint
MsgBox timePerPt
```

SampleMode

**Description**
Sets/Queries the mode of acquisition as real-time or sequence or random interleaved sampling. Note that RIS mode and sequence mode are not available over the entire range of time-bases, and are not available simultaneously.
WaveExpert differences: CIS and SEQ are the only timebase modes.

**Example**

```vbscript
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the mode of acquisition to random interleaved sampling.
app.Acquisition.Horizontal.SampleMode = "RIS"
' WaveExpert example
app.Acquisition.Horizontal.SampleMode = "CIS"
```

**Values**

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEQ</td>
</tr>
</tbody>
</table>
### AcquisitionDuration

**Range**  
From 1e-012 to 1e+012 step 1e-015  

**Description**  
Queries the duration of the last completed acquisition. The result may depend on the spacing of the triggers in sequence mode, and it may depend on the number of averages when a channel is in averaging mode.

**Example**  

```vbnet
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Obtain the duration of the last completed acquisition.
AcqDuration = app.Acquisition.Horizontal.AcquisitionDuration
MsgBox AcqDuration
```

### MaxSamples

**Range**  
From 500 to 16000 step 10, locked to 1 2.5 5, fine grain allowed=true, on=false  

**Description**  
Sets/Queries the maximum permissible number of samples to be used in the acquisition memories. At the faster sample rates, the actual number used may be less than this maximum.

**Example**  

```vbnet
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the available memory length per channel to 500
app.Acquisition.Horizontal.MaxSamples = 500
```

### SamplingRate

**Range**  
From 500 to 1e+013 step (2 digits)  

**Description**  
Queries the sampling rate. This is the effective sampling rate of the traces, rather than the sample rate of the ADCs.

**Example**  

```vbnet
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Inspect the effective sampling rate of the signal.
SamplingRate = app.Acquisition.Horizontal.SamplingRate
```

### HorScaleVariable

**Description**  
Sets/Queries time base variable step On/Off
Chapter Three

OperationMode

**Description**
Sets/Queries the operation mode. In Sampling scopes, the scope can be configured for Scope, Eye or TDR modes of operation.

**Values**

<table>
<thead>
<tr>
<th>OperationMode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eye</td>
<td>Eye mode will continuously accumulate data for persistence type of display</td>
</tr>
<tr>
<td>Scope</td>
<td>Scope mode will run like a real time scope.</td>
</tr>
<tr>
<td>TDR</td>
<td>TDR mode should be used for TDR based measurements</td>
</tr>
</tbody>
</table>

**Units**

**Description**
This control is applicable in Eye mode of operation only. It controls the timebase units of the output waveform.
1) When selected as Time, the horizontal unit will be in seconds
2) When selected as Bits, the horizontal unit will be in Uis. In this configuration, the unit interval of the output will be calculated using value of SignalBitrate control.

**Values**

<table>
<thead>
<tr>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Horizontal unit in seconds</td>
</tr>
</tbody>
</table>
**SignalStandardUI**

**Enum**

**Description**
This control selects signal standard. The value of signal bit rate will be updated on selection of new standard.

**Values**

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000BaseCX</td>
</tr>
<tr>
<td>1000BaseLX</td>
</tr>
<tr>
<td>1000BaseSX</td>
</tr>
<tr>
<td>10G10.4</td>
</tr>
<tr>
<td>10G9.9</td>
</tr>
<tr>
<td>10GBASELX4</td>
</tr>
<tr>
<td>10GbEFEC</td>
</tr>
<tr>
<td>10GFCX4</td>
</tr>
<tr>
<td>10XFC</td>
</tr>
<tr>
<td>10XFCFEC</td>
</tr>
<tr>
<td>DVI</td>
</tr>
<tr>
<td>FBDIMM3.2Gbs</td>
</tr>
<tr>
<td>FBDIMM4.0Gbs</td>
</tr>
<tr>
<td>FBDIMM4.8Gbs</td>
</tr>
<tr>
<td>FC1063</td>
</tr>
<tr>
<td>FC133</td>
</tr>
<tr>
<td>FC2125</td>
</tr>
<tr>
<td>FC266</td>
</tr>
<tr>
<td>FC4250</td>
</tr>
<tr>
<td>FC531</td>
</tr>
<tr>
<td>FEC10.664</td>
</tr>
<tr>
<td>FEC10.709</td>
</tr>
<tr>
<td>FEC12.5</td>
</tr>
<tr>
<td>FSB533Mhz</td>
</tr>
<tr>
<td>FSB667Mhz</td>
</tr>
<tr>
<td>FSB800Mhz</td>
</tr>
<tr>
<td>IEEE1394b</td>
</tr>
<tr>
<td>Infini2.5Gbs</td>
</tr>
<tr>
<td>InfiniBand</td>
</tr>
<tr>
<td>OC1</td>
</tr>
<tr>
<td>OC12</td>
</tr>
<tr>
<td>OC192</td>
</tr>
<tr>
<td>OC3</td>
</tr>
<tr>
<td>OC48</td>
</tr>
<tr>
<td>OC768</td>
</tr>
<tr>
<td>PCIe1.0a</td>
</tr>
<tr>
<td>PCIe1.0aMobile</td>
</tr>
<tr>
<td>PCIe1.1</td>
</tr>
<tr>
<td>PCIeCompliance</td>
</tr>
</tbody>
</table>
### Chapter Three

#### Control Reference

<table>
<thead>
<tr>
<th>SignalBitRate</th>
<th>Double</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Range</strong></td>
<td>From 1000 to 5e+011 step 1000</td>
</tr>
<tr>
<td><strong>Description</strong></td>
<td>Sets/Queries value of signal bit rate. When the Signal Standard is set to Custom, this control sets the bit-rate value.</td>
</tr>
</tbody>
</table>

**FindBitRate**

**Action**

**Description**

Starts an Find Bit-rate operation. This operation operates only on the first visible channel. If no channels are visible, it operates on the first channel with sampling module.

**CISStrobeFreq**

**Double**

**Range**

From 1 to 100 step 1e-012

**Description**

Queries actual sampling rate of the CIS time base. The value reflects hardware sampling rate.

**FPGAStatus**

**Register**

**Range**

Register 16 bit

**Description**

This control is intended for internal use only. Do not use this control.
### PODSCALIBRATIONWIZARD

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibrate</td>
<td>This control initiates calibration wizards. Note: This controls is intended for On screen Wizard only. It involves operator's selections. Do not use for fully Automated system.</td>
</tr>
<tr>
<td>CalibratePod1</td>
<td></td>
</tr>
<tr>
<td>CalibratePod2</td>
<td></td>
</tr>
<tr>
<td>CalibratePod3</td>
<td></td>
</tr>
<tr>
<td>CalibratePod4</td>
<td></td>
</tr>
<tr>
<td>CancelCalibration</td>
<td>This control cancels active calibration process. Note: This controls is intended for On screen Wizard only. It involves operator's selections. Do not use for fully Automated system.</td>
</tr>
<tr>
<td>PodsCalStartWizard</td>
<td></td>
</tr>
</tbody>
</table>

### CalibratePod1

**Description**

This control enables/disables calibration for channel 1 Module. Note: This controls is intended for On screen Wizard only. It involves operator's selections. Do not use for fully Automated system.
Chapter Three

Control Reference

CalibratePod2

Description
This control enables/disables calibration for channel 2 Module.
Note: This control is intended for On screen Wizard only. It involves operator’s selections. Do not use for fully Automated system.

CalibratePod3

Description
This control enables/disables calibration for channel 3 Module.
Note: This control is intended for On screen Wizard only. It involves operator’s selections. Do not use for fully Automated system.

CalibratePod4

Description
This control enables/disables calibration for channel 4 Module.
Note: This control is intended for On screen Wizard only. It involves operator’s selections. Do not use for fully Automated system.

TRIGGER

This group of cvars controls all aspects of the trigger, except for trigger delay, which is in Acquisition.Horizontal.

Names of the form app.Acquisition.Trigger.Sources.xxxx are aliases of simpler names which are described in this section of the manual. Examples of alias pairs are as follows:
- app.Acquisition.Trigger.Sources("Cx") is equivalent to app.Acquisition.Trigger.Cx
- app.Acquisition.Trigger.Sources("Ext") is equivalent to app.Acquisition.Trigger.Ext
- app.Acquisition.Trigger.Sources("Line") is equivalent to app.Acquisition.Trigger.Line

Please see under Acquisition.Channels("Cx") for a programming example.

<table>
<thead>
<tr>
<th>Source</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source

Description
Sets/Queries the trigger source.

Example

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")
' Set the trigger source to external.
app.Acquisition.Trigger.Source = "Ext"

### Values

<table>
<thead>
<tr>
<th>Prescaler</th>
<th>Trigger</th>
</tr>
</thead>
</table>

### Type

| Enum |

### Description

Sets/Queries the trigger type (mode).

### Example

```
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the trigger type to glitch.
app.Acquisition.Trigger.Type = "Glitch"
```

### CURSORS

| app.Cursors |

This set of variables controls the cursor system.

<table>
<thead>
<tr>
<th>Track</th>
<th>Bool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Enum</td>
</tr>
<tr>
<td>View</td>
<td>Bool</td>
</tr>
<tr>
<td>XPos1</td>
<td>Double</td>
</tr>
<tr>
<td>XPos2</td>
<td>Double</td>
</tr>
<tr>
<td>YPos1</td>
<td>Double</td>
</tr>
<tr>
<td>YPos2</td>
<td>Double</td>
</tr>
</tbody>
</table>

### View

| Bool |

### Description

Sets/Queries visibility of the cursors.

### Example

```
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Make the cursors visible.
app.Cursors.View = "On"
```
Sets/Queries the currently selected type of cursor.

**Example**

```
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the cursor type to vertical relative.
app.Cursors.View = "On"
app.Cursors.Type = "VertRel"
```

<table>
<thead>
<tr>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HorizAbs</td>
<td>Single cursor, position specified in time</td>
</tr>
<tr>
<td>HorizRel</td>
<td>Dual cursors, positions specified in time</td>
</tr>
<tr>
<td>VertAbs</td>
<td>Single cursor, position specified vertically</td>
</tr>
<tr>
<td>VertRel</td>
<td>Dual cursors, positions specified vertically</td>
</tr>
</tbody>
</table>

Sets/Queries the state of tracking of a pair of cursors. If tracking is enabled then when the first cursor is moved, the second will track at a constant distance from it.

**Example**

```
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set cursors tracking on.
app.Cursors.Track = True
```

**XPos1**

- **Range**: From \(-1.79769e+308\) to \(1.79769e+308\) step 0
- **Description**: Sets/Queries the horizontal position of the first cursor, in the units of the horizontal variable.

**Example**

```
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the horizontal position of the first cursor to 50 ns.
app.Cursors.XPos1 = 50e-9
```
Chapter Three

**Control Reference**

### XPos2

**Range**
From -1.79769e+308 to 1.79769e+308 step 0

**Description**
Sets/Queries the horizontal position of the second cursor, in the units of the horizontal variable.

**Example**

```vbs
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the horizontal position of the second cursor to 4.5 ms.
app.Cursors.XPos2 = 4.5e-3
```

### YPos1

**Range**
From -3.99 to 3.99 step 0.01

**Description**
Sets/Queries the vertical position of the first cursor, in graticule divisions.

**Example**

```vbs
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the vertical position of the first cursor.
app.Cursors.YPos1 = 3.4
```

### YPos2

**Range**
From -3.99 to 3.99 step 0.01

**Description**
Sets/Queries the vertical position of the second cursor, in graticule divisions.

**Example**

```vbs
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the vertical position of the second cursor.
app.Cursors.YPos2 = 2.1
```

### DISPLAY

This set of variables controls the properties of the screen display of the instrument.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>AxisLabels</td>
<td>Bool</td>
</tr>
<tr>
<td>Brightness</td>
<td>Integer</td>
</tr>
<tr>
<td>C1Color</td>
<td>Color</td>
</tr>
<tr>
<td>C1PrintColor</td>
<td>Color</td>
</tr>
<tr>
<td>C2Color</td>
<td>Color</td>
</tr>
<tr>
<td>C2PrintColor</td>
<td>Color</td>
</tr>
<tr>
<td>C3Color</td>
<td>Color</td>
</tr>
<tr>
<td>C3PrintColor</td>
<td>Color</td>
</tr>
</tbody>
</table>

**app.Display**
### GridMode

**Enum**

**Description**
Sets/Queries the grid mode. The commands "Single" and "Dual", for example, set the grid mode until

<table>
<thead>
<tr>
<th>C4Color</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4PrintColor</td>
<td>Color</td>
</tr>
<tr>
<td>ClearSweeps</td>
<td>Action</td>
</tr>
<tr>
<td>DisplayMode</td>
<td>Enum</td>
</tr>
<tr>
<td>F1Color</td>
<td>Color</td>
</tr>
<tr>
<td>F1PrintColor</td>
<td>Color</td>
</tr>
<tr>
<td>F2Color</td>
<td>Color</td>
</tr>
<tr>
<td>F2PrintColor</td>
<td>Color</td>
</tr>
<tr>
<td>F3Color</td>
<td>Color</td>
</tr>
<tr>
<td>F3PrintColor</td>
<td>Color</td>
</tr>
<tr>
<td>F4Color</td>
<td>Color</td>
</tr>
<tr>
<td>F4PrintColor</td>
<td>Color</td>
</tr>
<tr>
<td>F5Color</td>
<td>Color</td>
</tr>
<tr>
<td>F5PrintColor</td>
<td>Color</td>
</tr>
<tr>
<td>F6Color</td>
<td>Color</td>
</tr>
<tr>
<td>F6PrintColor</td>
<td>Color</td>
</tr>
<tr>
<td>F7Color</td>
<td>Color</td>
</tr>
<tr>
<td>F7PrintColor</td>
<td>Color</td>
</tr>
<tr>
<td>F8Color</td>
<td>Color</td>
</tr>
<tr>
<td>F8PrintColor</td>
<td>Color</td>
</tr>
<tr>
<td>FactoryDefault</td>
<td>Action</td>
</tr>
<tr>
<td>GridIntensity</td>
<td>Integer</td>
</tr>
<tr>
<td>GridMode</td>
<td>Enum</td>
</tr>
<tr>
<td>GridOnTop</td>
<td>Bool</td>
</tr>
<tr>
<td>M1Color</td>
<td>Color</td>
</tr>
<tr>
<td>M1PrintColor</td>
<td>Color</td>
</tr>
<tr>
<td>M2Color</td>
<td>Color</td>
</tr>
<tr>
<td>M2PrintColor</td>
<td>Color</td>
</tr>
<tr>
<td>M3Color</td>
<td>Color</td>
</tr>
<tr>
<td>M3PrintColor</td>
<td>Color</td>
</tr>
<tr>
<td>M4Color</td>
<td>Color</td>
</tr>
<tr>
<td>M4PrintColor</td>
<td>Color</td>
</tr>
<tr>
<td>Persisted</td>
<td>Bool</td>
</tr>
<tr>
<td>Persistence3d</td>
<td>Bool</td>
</tr>
<tr>
<td>PersistenceLastTrace</td>
<td>Bool</td>
</tr>
<tr>
<td>PersistenceSaturation</td>
<td>Integer</td>
</tr>
<tr>
<td>PersistenceStyle</td>
<td>Enum</td>
</tr>
<tr>
<td>PersistenceTime</td>
<td>Enum</td>
</tr>
<tr>
<td>PreviewPrintColors</td>
<td>Action</td>
</tr>
<tr>
<td>ResetAll</td>
<td>Action</td>
</tr>
<tr>
<td>TraceStyle</td>
<td>Enum</td>
</tr>
</tbody>
</table>
countermanded. “Auto” allows the instrument to set the grid mode most suitable for the current number of visible traces.

Example
'
Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")
'
Enter Octal grid mode
app.Display.GridMode = "Octal"

Values

<table>
<thead>
<tr>
<th>Auto</th>
<th>Automatically choose grid mode, one trace per grid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual</td>
<td>Dual grid mode</td>
</tr>
<tr>
<td>Octal</td>
<td>Octal grid mode</td>
</tr>
<tr>
<td>Quad</td>
<td>Quad grid mode</td>
</tr>
<tr>
<td>Single</td>
<td>Single grid mode</td>
</tr>
<tr>
<td>XY</td>
<td>XY grid mode</td>
</tr>
<tr>
<td>XYDual</td>
<td>XY + Dual grid mode</td>
</tr>
<tr>
<td>XYSingle</td>
<td>XY + Single grid mode</td>
</tr>
</tbody>
</table>

TraceStyle

Description
Sets/Queries the style in which traces are drawn.

Example
'
Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")
'
Read the state of the persistence mode.
TraceStyle = app.Display.TraceStyle

Values

<table>
<thead>
<tr>
<th>Line</th>
<th>Connect adjacent samples with straight lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>Show only the sample points</td>
</tr>
</tbody>
</table>

GridIntensity

Range          From 0 to 100 step 1

Description
Sets/Queries the grid intensity as a percentage of the maximum value, with a resolution of 1%.

Example
'
Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")
'
Set the grid intensity to 60% of the maximum.
app.Display.GridIntensity = 60
### Brightness

**Integer**

**Range**
From 30 to 100 step 1

**Description**
LCD Display Brightness, only used on older WaveRunner 6000 DSOs.

### GridOnTop

**Bool**

**Description**
Sets/Queries whether the grid lines lie over the traces or vice versa.

**Example**

```vbscript
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the grid lines to be over the trace lines.
app.Display.GridOnTop = True
```

### AxisLabels

**Bool**

**Description**
Sets/Queries the visibility of the labels that show the horizontal and vertical limits of each grid.

**Example**

```vbscript
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Show the axis labels.
app.Display.AxisLabels = True
```

### DisplayMode

**Enum**

**Description**
Sets/Queries the display mode as either "Scope", showing the normal instrument screen, or "WebEdit", showing the web processor editing panel. Note that WebEdit mode is available only with certain software options, including XMATH and XMAP.

**Example**

```vbscript
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Switch to WebEdit mode
app.Display.DisplayMode = "WebEdit"
```

**Values**

<table>
<thead>
<tr>
<th>Scope</th>
<th></th>
</tr>
</thead>
</table>

3-35
PersistenceStyle

**Description**
Sets/Queries the type of persistence trace displayed.

**Example**

```
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the persistence style to color graded.
app.Display.PersistenceStyle = "ColorGraded"
```

**Values**

| Analog | ColorGraded |

Persisted

**Description**
Sets/Queries whether persistence mode is in use. If the previously set persistence mode is per trace, the persisted cvar will be set as true by this command, even if none of the traces has been set to persistence mode.

**Example**

```
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Read the state of persistence mode.
Persist = app.Display.Persisted
```

Persistence3d

**Description**
Sets/Queries whether the persistence 3-D mode is activated.

**Example**

```
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the 3-D display to off.
app.Display.Persistence3d = False
```
Control Reference

PersistenceSaturation

<table>
<thead>
<tr>
<th>Range</th>
<th>From 0 to 100 step 1</th>
</tr>
</thead>
</table>

**Description**
Sets/Queries the population level, relative to the maximum possible level, at which the persistence traces reach maximum intensity, and above which there are no further changes in color or intensity.

**Example**

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the persistence saturation level to 60%.
app.Display.PersistenceSaturation = 60

PersistenceTime

**Description**
Sets/Queries decay time for trace persistence, expressed as a number of seconds, or as "infinity".

**Example**

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the persistence time to 10 seconds.
app.Display.PersistenceTime = "10s"

**Values**

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5s</td>
</tr>
<tr>
<td>10s</td>
</tr>
<tr>
<td>1s</td>
</tr>
<tr>
<td>20s</td>
</tr>
<tr>
<td>2s</td>
</tr>
<tr>
<td>5s</td>
</tr>
<tr>
<td>Infinite</td>
</tr>
</tbody>
</table>

PersistenceLastTrace

**Description**
Sets/Queries whether the last created trace is shown over the persistence trace.

**Example**

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the persistence display to show the last trace on top of the persistence trace.
app.Display.PersistenceLastTrace = True
ClearSweeps

Description
Initiates the Clear Sweeps operation. Clears history only for persistence traces, see the main Clear Sweeps control 'app.ClearSweeps', or the ClearSweeps control in other subsystems for other options.

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Initiate a clear sweeps action for persistence traces.
app.Display.ClearSweeps

ResetAll

Description
Turns off persistence on any traces where it has been set on.

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Reset all persistence traces to non-persisted mode.
app.Display.ResetAll

C1Color

Range From 0 to 16777215

Description
Sets/Queries the color of trace C1, using a number in the range 0 to FFFFFFF in hexadecimal. The possible colors are made from any combination of the primary colors, which are set in hexadecimal as Blue = &HFF0000, Green = &HFF00, Red = &HFF. The value may be entered in decimal or in hexadecimal, though hexadecimal is usually more convenient. Note that if the intensity of a color is to be reduced or increased by a numerical factor, an AND operation must be used afterwards, to prevent corruption of other primary colors.

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

Red = &Hff: Green = &H80: Blue = &H00

' Set the color of channel C1 trace to orange
app.Display.C1Color = (Blue * &H10000) + (Green * &H100) + Red
### C1PrintColor

<table>
<thead>
<tr>
<th>Range</th>
<th>From 0 to 16777215</th>
</tr>
</thead>
</table>
| Description    | Sets/Queries the color, in the printing palette, of trace C1, using a number in the range 0 to FFFFFFFF in hexadecimal. The primary colors are Blue = &HFF0000, Green = &HFF00, Red = &HFF in hexadecimal. The value may be entered in decimal or in hexadecimal.

**Example**

```vbscript
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")
Red = &Hff: Green = &H80: Blue = &H00

' Set the color of channel C1 trace to orange for printing.
app.Display.C1PrintColor = (Blue * &H10000) + (Green * &H100) + Red
```

### C2Color

<table>
<thead>
<tr>
<th>Range</th>
<th>From 0 to 16777215</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Please see C1Color.</td>
</tr>
</tbody>
</table>

### C2PrintColor

<table>
<thead>
<tr>
<th>Range</th>
<th>From 0 to 16777215</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Please see C1Printcolor.</td>
</tr>
</tbody>
</table>

### C3Color

<table>
<thead>
<tr>
<th>Range</th>
<th>From 0 to 16777215</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Please see C1Color.</td>
</tr>
</tbody>
</table>

### C3PrintColor

<table>
<thead>
<tr>
<th>Range</th>
<th>From 0 to 16777215</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Please see C1Printcolor.</td>
</tr>
</tbody>
</table>
### C4Color

**Range**
From 0 to 16777215

**Description**
Please see C1Color.

### C4PrintColor

**Range**
From 0 to 16777215

**Description**
Please see C1PrintColor.

### F1Color

**Range**
From 0 to 16777215

**Description**
Please see C1Color.

### F1PrintColor

**Range**
From 0 to 16777215

**Description**
Please see C1PrintColor.

### F2Color

**Range**
From 0 to 16777215

**Description**
Please see C1Color.

### F2PrintColor

**Range**
From 0 to 16777215

**Description**
Please see C1PrintColor.
### F3Color

**Range**  
From 0 to 16777215

**Description**  
Please see C1Color.

### F3PrintColor

**Range**  
From 0 to 16777215

**Description**  
Please see C1Printcolor.

### F4Color

**Range**  
From 0 to 16777215

**Description**  
Please see C1Color.

### F4PrintColor

**Range**  
From 0 to 16777215

**Description**  
Please see C1Printcolor.

### F5Color

**Range**  
From 0 to 16777215

**Description**  
Please see C1Color.

### F5PrintColor

**Range**  
From 0 to 16777215

**Description**  
Please see C1Printcolor.
### F6Color

**Range**  From 0 to 16777215

**Description**  Please see C1Color.

### F6PrintColor

**Range**  From 0 to 16777215

**Description**  Please see C1Printcolor.

### F7Color

**Range**  From 0 to 16777215

**Description**  Please see C1Color.

### F7PrintColor

**Range**  From 0 to 16777215

**Description**  Please see C1Printcolor.

### F8Color

**Range**  From 0 to 16777215

**Description**  Please see C1Color.

### F8PrintColor

**Range**  From 0 to 16777215

**Description**  Please see C1Printcolor.
<table>
<thead>
<tr>
<th>Control Reference</th>
<th>M1Color</th>
<th>M1PrintColor</th>
<th>M2Color</th>
<th>M2PrintColor</th>
<th>M3Color</th>
<th>M3PrintColor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>Color</td>
<td>Color</td>
<td>Color</td>
<td>Color</td>
<td>Color</td>
<td>Color</td>
</tr>
<tr>
<td>Range</td>
<td>From 0 to 16777215</td>
</tr>
<tr>
<td>Description</td>
<td>Please see C1Color.</td>
<td>Please see C1Printcolor.</td>
<td>Please see C1Color.</td>
<td>Please see C1Printcolor.</td>
<td>Please see C1Color.</td>
<td>Please see C1Printcolor.</td>
</tr>
</tbody>
</table>
M4Color

<table>
<thead>
<tr>
<th>Range</th>
<th>From 0 to 16777215</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Please see C1Color.</td>
</tr>
</tbody>
</table>

M4PrintColor

<table>
<thead>
<tr>
<th>Range</th>
<th>From 0 to 16777215</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Please see C1PrintColor.</td>
</tr>
</tbody>
</table>

FactoryDefault

<table>
<thead>
<tr>
<th>Description</th>
<th>Restores the display of the instrument to the factory default settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td>' Visual Basic Script</td>
</tr>
<tr>
<td></td>
<td>Set app = CreateObject(&quot;LeCroy.XStreamDSO&quot;)</td>
</tr>
<tr>
<td>app.Display.FactoryDefault</td>
<td></td>
</tr>
</tbody>
</table>

PreviewPrintColors

<table>
<thead>
<tr>
<th>Description</th>
<th>Show the instrument display in the current color scheme selected for printing.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td>' Visual Basic Script</td>
</tr>
<tr>
<td>Set app = CreateObject(&quot;LeCroy.XStreamDSO&quot;)</td>
<td></td>
</tr>
<tr>
<td>app.Display.PreviewPrintColors</td>
<td></td>
</tr>
</tbody>
</table>

HARDCOPY

This set of variables controls the transfer of information about the screen display to destinations such as disc files, internal memories, printers and remote computers.

<table>
<thead>
<tr>
<th>Destination</th>
<th>Enum</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMailMessage</td>
<td>String</td>
</tr>
<tr>
<td>GridAreaOnly</td>
<td>Bool</td>
</tr>
<tr>
<td>HardcopyArea</td>
<td>Enum</td>
</tr>
<tr>
<td>Orientation</td>
<td>Enum</td>
</tr>
</tbody>
</table>
### Chapter Three

**Control Reference**

<table>
<thead>
<tr>
<th>PreferredFilename</th>
<th>String</th>
</tr>
</thead>
<tbody>
<tr>
<td>Print</td>
<td>Action</td>
</tr>
<tr>
<td>PrintLogo</td>
<td>Bool</td>
</tr>
<tr>
<td>SelectedPrinter</td>
<td>Enum</td>
</tr>
<tr>
<td>StripChart</td>
<td>Bool</td>
</tr>
<tr>
<td>StripChartFactor</td>
<td>Enum</td>
</tr>
<tr>
<td>UseColor</td>
<td>Enum</td>
</tr>
</tbody>
</table>

#### Print

**Description**
Initiates a hard copy.

**Example**

```Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Initiate a hard copy.
app.Hardcopy.Print
```

#### PrintLogo

**Bool**

#### UseColor

**Enum**

**Description**
Defines the color scheme to be used when printing.

**Values**

<table>
<thead>
<tr>
<th>BW</th>
<th>Optimized for black and white printers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Print</td>
<td>Use print colors (white background)</td>
</tr>
<tr>
<td>Std</td>
<td>As presented on DSO display</td>
</tr>
</tbody>
</table>

#### PreferredFilename

**String**

**Range**
Any number of characters

**Description**
Sets/Queries the preferred file name to use for hard copy.

**Example**

```Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the preferred filename to PrintFile.
app.Hardcopy.PreferredFilename = "PrintFile"
```
Chapter Three
Control Reference

EMailMessage

<table>
<thead>
<tr>
<th>Range</th>
<th>String</th>
</tr>
</thead>
</table>

Sets/Queries the e-mail message.

Example

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Create the e-mail message - "Results for run 89".
app.Hardcopy.EMailMessage = "Results for run 89"

Orientation

<table>
<thead>
<tr>
<th>Range</th>
<th>Enum</th>
</tr>
</thead>
</table>

Sets/Queries the orientation for hard copy to landscape.
Valid only when emitting to a printer as opposed to a file, the clipboard, or an E-Mail.

Example

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the orientation for hardcopy to landscape.
app.Hardcopy.Orientation = "Landscape"

Values

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landscape</td>
</tr>
<tr>
<td>Portrait</td>
</tr>
</tbody>
</table>

Destination

<table>
<thead>
<tr>
<th>Range</th>
<th>Enum</th>
</tr>
</thead>
</table>

Sets/Queries the destination for hard copy.

Example

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the destination for hard copy to e-mail.
app.Hardcopy.Destination = "EMail"

Values

<table>
<thead>
<tr>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clipboard</td>
<td>Send to clipboard for pasting into other applications</td>
</tr>
<tr>
<td>EMail</td>
<td>Send image in an E-Mail</td>
</tr>
<tr>
<td>File</td>
<td>Store image in a file</td>
</tr>
<tr>
<td>Printer</td>
<td>Print to a local, or networked printer</td>
</tr>
<tr>
<td>Remote</td>
<td>Special case used for remote printing, not usually used</td>
</tr>
</tbody>
</table>
Chapter Three

Control Reference

SelectedPrinter

Description
Sets/Queries the selection of the printer for hard copy. Note that whitespace and punctuation are removed from the string.

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Select BarbondaleTintJet as the printer for hardcopy
app.Hardcopy.SelectedPrinter = "BarbondaleTintJet"

Values

HardcopyArea

Description
Sets/Queries the area of the screen to be included in a hard copy.

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Select the DSO screen area for hard copy.
app.Hardcopy.HardCopyArea = "DSOWindow"

Values

<table>
<thead>
<tr>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSOWindow</td>
<td>Include only the DSO window</td>
</tr>
<tr>
<td>FullScreen</td>
<td>Include the full display screen</td>
</tr>
<tr>
<td>GridAreaOnly</td>
<td>Include the grid area only (doesn't include menus)</td>
</tr>
</tbody>
</table>

GridAreaOnly

Description
Sets/Queries whether hard copy is of grid area only.

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Read the status of Grid Area Only.
GridArea = app.Hardcopy.GridAreaOnly

StripChart

Description
Sets/Queries the status of strip chart mode of printing. Valid only when emitting to the internal printer.
Chapter Three

Control Reference

StripChartFactor

Sets/Queries the scale factor for strip chart printing. Valid only when emitting to the internal printer.

Example

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the strip chart scale to 5 cm/division.
app.Hardcopy.StripChartFactor = "5cmdiv"

Values

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>100cmdiv</td>
</tr>
<tr>
<td>10cmdiv</td>
</tr>
<tr>
<td>1cmdiv</td>
</tr>
<tr>
<td>200cmdiv</td>
</tr>
<tr>
<td>20cmdiv</td>
</tr>
<tr>
<td>2cmdiv</td>
</tr>
<tr>
<td>50cmdiv</td>
</tr>
<tr>
<td>5cmdiv</td>
</tr>
</tbody>
</table>

LABNOTEBOOK

app.LabNotebook

Provides access to the 'LabNotebook' feature. This allows the entire scope state (Waveforms, Setups, Display Images) to be stored, annotated, recalled, emailed, etc.

<table>
<thead>
<tr>
<th>AttachFilesToEMail</th>
<th>Bool</th>
</tr>
</thead>
<tbody>
<tr>
<td>BackupDatabase</td>
<td>Action</td>
</tr>
<tr>
<td>BackupFilename</td>
<td>String</td>
</tr>
<tr>
<td>BackupFolder</td>
<td>FileName</td>
</tr>
<tr>
<td>BackupToFolders</td>
<td>Action</td>
</tr>
<tr>
<td>BackupToMemoryStick</td>
<td>Action</td>
</tr>
<tr>
<td>ClearFilter</td>
<td>Action</td>
</tr>
<tr>
<td>CompactDatabase</td>
<td>Action</td>
</tr>
<tr>
<td>ConnectToFPHardCopy</td>
<td>Action</td>
</tr>
<tr>
<td>CreateReport</td>
<td>Action</td>
</tr>
<tr>
<td>DeleteAll</td>
<td>Action</td>
</tr>
<tr>
<td>DeleteRecord</td>
<td>Action</td>
</tr>
<tr>
<td>EMailRecord</td>
<td>Action</td>
</tr>
<tr>
<td>FilterRecords</td>
<td>Action</td>
</tr>
<tr>
<td>FlashBackToRecord</td>
<td>Action</td>
</tr>
<tr>
<td>Format</td>
<td>Enum</td>
</tr>
<tr>
<td>HardcopyArea</td>
<td>Enum</td>
</tr>
<tr>
<td>InternalView</td>
<td>Action</td>
</tr>
<tr>
<td>MyLabNotebookMD</td>
<td>FileName</td>
</tr>
<tr>
<td>NextRecord</td>
<td>Action</td>
</tr>
<tr>
<td>PreviousRecord</td>
<td>Action</td>
</tr>
<tr>
<td>PrintRecord</td>
<td>Action</td>
</tr>
<tr>
<td>PromptBeforeSaving</td>
<td>Bool</td>
</tr>
</tbody>
</table>
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Save the current state of the DSO into the Notebook
app.LabNotebook.ScribbleBeforeSaving = False
app.LabNotebook.PromptBeforeSaving = False
app.LabNotebook.Save

' Create a PDF report, and store it in the root of drive C:
app.LabNotebook.ReportsDirectory = "C:\"
app.LabNotebook.Format = "PDF"
app.LabNotebook.CreateReport

' Send the report in an email
app.Preferences.Email.Mode = "SMTP"
app.Preferences.Email.DefaultRecipient = "somebody@somewhere.com"
app.LabNotebook.EMailRecord

---

### RecordList

<table>
<thead>
<tr>
<th>Description</th>
<th>Enum</th>
</tr>
</thead>
<tbody>
<tr>
<td>The list of entries in the Lab Notebook, named using a GUID.</td>
<td></td>
</tr>
</tbody>
</table>

### NextRecord

<table>
<thead>
<tr>
<th>Description</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move to (select) the next entry in the notebook.</td>
<td></td>
</tr>
</tbody>
</table>

### PreviousRecord

<table>
<thead>
<tr>
<th>Description</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move to (select) the previous entry in the notebook.</td>
<td></td>
</tr>
</tbody>
</table>
### Chapter Three

**Control Reference**

<table>
<thead>
<tr>
<th>Save</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Description</strong></td>
<td>Initiate the creation of a new Lab Notebook entry.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FilterRecords</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Description</strong></td>
<td>Popup a dialog proposing various filtering methods, including date, and/or keyword based filters.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ClearFilter</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Description</strong></td>
<td>Clear the Notebook entry filter.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>InternalView</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Description</strong></td>
<td>View the selected Lab Notebook entry within the DSO's graticule area. Contrast with the 'ViewRecord' control, which presents the selected Lab Notebook entry in an external HTML browser.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CreateReport</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Description</strong></td>
<td>Create a report (PDF/RTF/HTML) of the currently selected notebook entry.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FlashBackToRecord</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Description</strong></td>
<td>Restore (FlashBack) the scope to the state that it was in when the current lab notebook entry was saved. This may include the setup, and active waveforms.</td>
</tr>
</tbody>
</table>
Chapter Three

DeleteRecord

**Action**

**Description**
Delete the currently selected LabNotebook record. 
Note that this will popup a modal dialog requesting confirmation.

DeleteAll

**Action**

**Description**
Delete all LabNotebook entries. 
Note that this action will popup a modal dialog, requesting confirmation.

Format

**Enum**

**Description**
File Format in which exported reports are saved.

**Values**

<table>
<thead>
<tr>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTML</td>
<td></td>
</tr>
<tr>
<td>PDF</td>
<td>Adobe Acrobat file</td>
</tr>
<tr>
<td>RTF</td>
<td>Rich-text file (MS Wordpad, Word, etc.)</td>
</tr>
</tbody>
</table>

ViewRecord

**Action**

**Description**
View the selected Lab Notebook entry in an external HTML browser. 
Contrast with the 'ViewInternal' control, which presents the selected Lab Notebook entry within the DSO's graticule area.

PrintRecord

**Action**

**Description**
Print the selected Lab Notebook entry. This action will present a popup allowing the target printer to be selected.
Chapter Three

Control Reference

**EMailRecord**

**Description**
Email the currently selected record, in the selected format (PDF/RTF/HTML), to the recipient specified in the email setup (app.Preferences.Email).

**PromptBeforeSaving**

**Description**
If true, the DSO will prompt the interactive user for a summary, and description, before the notebook entry is created.

**ScribbleBeforeSaving**

**Description**
If True, the DSO will allow the interactive user to 'scribble' (annotate) the report page before it is saved.

**ConnectToFPHardCopy**

**Description**
If True, the front-panel 'Print Screen' button is overridden to create a LabNotebook entry instead of its normal function.

**UsePrintColor**

**Description**
If True, 'print colors' are used when storing an image of the display. These use a white background, as opposed to black, to save toner/ink.
Chapter Three

Control Reference

HardcopyArea

Description
Defines the region of the display that is stored when creating a new entry in the notebook.

Values

<table>
<thead>
<tr>
<th>Enum</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSOWindow</td>
<td>Contents of DSO window, incl. dialog + menu bar</td>
</tr>
<tr>
<td>FullScreen</td>
<td>Entire windows display area</td>
</tr>
<tr>
<td>GridAreaOnly</td>
<td>Grid area only</td>
</tr>
</tbody>
</table>

AttachFilesToEMail

Bool

Description
If true, the DSO Setup, and all enabled waveforms will be attached to any emailed report.

ReportsDirectory

FileName

Range Any number of characters

Description
The directory in which Lab Notebook reports are created.

XSLTemplate

FileName

Range Any number of characters

Description
Filename of the XSL template used in creating reports from Lab Notebook pages.

ReportLogo

FileName

Range Any number of characters

Description
Contains the full pathname of the logo which will appear on Lab Notebook pages.
Chapter Three

Control Reference

UseDefaultLogo

**Description**
If True, the default logo is used on Lab Notebook pages. If False, the logo specified by the ReportLogo control is used instead.

UseDefaultTemplate

**Description**
If True, the default xsl template is used when creating reports from LabNotebook pages. If False, the template file specified by the XSLTemplate control is used instead.

CompactDatabase

**Description**
Compact the LabNotebook database. Useful if entries have been deleted from the database, to reclaim disk space.

MyLabNotebookMD

**FileName**

**Range**
Any number of characters

**Description**
Filename of the currently active Lab Notebook database.

StartNew

**Action**

**Description**
Start a new Lab Notebook. This action will prompt the interactive user for the filename of the new Lab Notebook database file.

BackupDatabase

**Action**

**Description**
Backup the current LabNotebook database. Note that this control will present a modal dialog, prompting for the backup filename and folder. Use the BackupToFolder control to skip the dialog.
Chapter Three

BackupToFolder

Description
Create a backup of the current LabNotebook database into the file specified by the BackupFolder/BackupFilename controls.

BackupToMemoryStick

Description
Create a backup of the current LabNotebook database into a file on an attached memory stick.

BackupFilename

Range
Any number of characters

Description
Contains the filename into which the LabNotebook is stored, when the BackupDatabase request is made.

BackupFolder

Range
Any number of characters

Description
Contains the folder into which the LabNotebook is stored, when the BackupDatabase request is made.

MATH

Variables of the form app.Math.xxxx control the mathematical functions F1 through F8.

Names of the form app.Math.Functions("Fx").xxxx are aliases of simpler names which are described in this section of the manual. Examples of alias pairs are as follows -
- app.Math.Functions("Fx") is equivalent to app.Math.Fx
- app.Math.Functions("Fx").Zoom is equivalent to app.Math.Zoom.Fx

Please see under Acquisition.Channels for a programming example.

<table>
<thead>
<tr>
<th>MATH Method</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClearSweeps</td>
<td>Action</td>
</tr>
<tr>
<td>ResetAll</td>
<td>Action</td>
</tr>
<tr>
<td>ShowZoomMenu</td>
<td>Action</td>
</tr>
</tbody>
</table>

ClearSweeps
Chapter Three  

Description

Clear sweeps for history functions such as average, histogram and trend. See also the general 'app.ClearSweeps' control which clears accumulated data for all subsystems, including persistence, measurement statistics, etc.

Example

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Clear sweeps for all history functions.
app.Math.ClearSweeps

ResetAll

Description

Reset the math subsystem to its default state.
All currently selected math operators, and other settings will be lost.

ShowZoomMenu

Description

Present the Zoom setup Menu (to setup the Zoom (Z) traces).

FUNCTIONS

Names of the form app.Math.Functions("Fx").xxxx are aliases of simpler names which are described in the section of the manual which is devoted to app.Math. Examples of alias pairs are as follows -
app.Math.Functions("Fx") is equivalent to app.Math.Fx
app.Math.Functions("Fx").Zoom is equivalent to app.Math.Zoom.Fx
Please see under Acquisition.Channels for a programming example.

FX

This set of variables controls the math functions F1 through F8.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClearSweeps</td>
<td>Action</td>
</tr>
<tr>
<td>DoResetZoom</td>
<td>Action</td>
</tr>
<tr>
<td>DoStoreToMemoryTrace</td>
<td>Action</td>
</tr>
<tr>
<td>Equation</td>
<td>String</td>
</tr>
<tr>
<td>LabelsPosition</td>
<td>String</td>
</tr>
<tr>
<td>LabelsText</td>
<td>String</td>
</tr>
<tr>
<td>MathMode</td>
<td>Enum</td>
</tr>
</tbody>
</table>
ClearSweeps

Description
Clears accumulated data for a single function trace.

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Reset accumulation for trace F1

UseGrid

Range  Any number of characters

Description
Sets/Queries the grid in use for the math trace Fx.
See also app.Acquisition.Cx.UseGrid.

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Place math trace F3 on grid YT4.
app.Math.F3.UseGrid = "YT4"

Persisted

Description
Sets/Queries the persisted state of the function waveform. If the Display.LockPersistence control is set to 'AllLocked' then the persisted state of all displayed waveforms will be the same. If the Display.LockPersistence control is set to 'PerTrace' then the persisted state of each waveform may be independently controlled.

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set persistence on for trace F3.
PersistenceSaturation

**Range**
From 0 to 100 step 1

**Description**
Sets/Queries the saturation threshold for persisted waveforms. All information at this level or above will be recorded with the same color or intensity. See the general description above for a discussion of the locked and unlocked persistence modes.

**Example**

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the persistence saturation level for trace F1.
app.Math.F1.PersistenceSaturation = 40

ShowLastTrace

**Description**
Sets/Queries the state of the Show Last Trace control. If True then when this trace is displayed in persistence mode the last acquired waveform will be superimposed on the accumulating persistence map. See the general description above for a discussion of the locked and unlocked persistence modes.

**Example**

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Do not show the last trace for the persistence trace of trace F1.
app.Math.F1.ShowLastTrace = False

PersistenceTime

**Description**
Sets/Queries the state of the Persistence Time control. Controls the persistence decay time for this trace. See the general description above for a discussion of the locked and unlocked persistence modes.

**Example**

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the persistence time for the trace F1 to 10 seconds.
app.Math.F1.PersistenceTime = "10s"

**Values**

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5s</td>
</tr>
<tr>
<td>10s</td>
</tr>
<tr>
<td>1s</td>
</tr>
<tr>
<td>20s</td>
</tr>
<tr>
<td>2s</td>
</tr>
<tr>
<td>5s</td>
</tr>
<tr>
<td>Infinite</td>
</tr>
</tbody>
</table>
Chapter Three

LabelsText

**Range**
Any number of characters

**Description**
Sets / Queries the text that appears in labels attached to acquisition trace Cx. Multiple labels may be specified by using comma as a delimiter. See the documentation on LabelsPosition for an example of use.

LabelsPosition

**Range**
Any number of characters

**Description**
Sets / Queries the horizontal position of the label attached to the trace Fx. The unit of measurement is the unit of the horizontal scale. The measurement is made from the trigger point. Note that this control is a string, not a numeric value. This allows multiple labels to be positioned, as shown in the example below.

**Example**
```
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Add a couple of labels to trace F1, one at 0ns, and one at 55ns
app.SetToDefaultSetup
app.Math.F1.View = True
app.Math.F1.ViewLabels = True
app.Math.F1.LabelsPosition = "0.0, 55e-9"
app.Math.F1.LabelsText = "Hello,World"
```

ViewLabels

**Description**
Sets/Queries whether trace labels, defined with LabelsText and LabelsPosition controls, are shown.

**Example**
```
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Show the user-defined trace label for trace F1
app.Math.F1.ViewLabels = True
```
MathMode

Description
Sets/Queries the math mode.

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the mode of the math function F1

Values

<table>
<thead>
<tr>
<th>Description</th>
<th>Graphing mode, chain a measurement and a graphing operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphing</td>
<td>Graphing mode, chain a measurement and a graphing operator</td>
</tr>
<tr>
<td>OneOperator</td>
<td>Single math operator</td>
</tr>
<tr>
<td>TwoOperators</td>
<td>Chain two math operators</td>
</tr>
</tbody>
</table>

Equation

Description
Queries the equation which defines the math function Fx.

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Read the definition of math function F3.
MsgBox EquationF3
Chapter Three

Operator1

**Description**

Sets/Queries the first operator of math function Fx. When MathMode = "OneOperator, this is the only math operator, when MathMode = "TwoOperator", this is the first of two operators. Note that when MathMode = "Graph", this control has no effect. Note also that the list of available math operators varies depending upon the instrument model number, and the list of installed software options.

**Example**

```Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Define the first operator of math function F1 as an Average
app.Math.F1.View = True
app.Math.F1.MathMode = "OneOperator"
app.Math.F1.Operator1 = "Average"
```

**Values**

<table>
<thead>
<tr>
<th>Enum</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AbsoluteValue</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td></td>
</tr>
<tr>
<td>Copy</td>
<td></td>
</tr>
<tr>
<td>Derivative</td>
<td></td>
</tr>
<tr>
<td>Deskew</td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td></td>
</tr>
<tr>
<td>EnhancedResolution</td>
<td></td>
</tr>
<tr>
<td>Envelope</td>
<td></td>
</tr>
<tr>
<td>Exp</td>
<td></td>
</tr>
<tr>
<td>Exp10</td>
<td></td>
</tr>
<tr>
<td>FFT</td>
<td></td>
</tr>
<tr>
<td>Floor</td>
<td></td>
</tr>
<tr>
<td>Histogram</td>
<td></td>
</tr>
<tr>
<td>Integral</td>
<td></td>
</tr>
<tr>
<td>Invert</td>
<td></td>
</tr>
<tr>
<td>Ln</td>
<td></td>
</tr>
<tr>
<td>Log10</td>
<td></td>
</tr>
<tr>
<td>MATLABWaveform</td>
<td></td>
</tr>
<tr>
<td>Null</td>
<td></td>
</tr>
<tr>
<td>PersistenceHistogram</td>
<td></td>
</tr>
<tr>
<td>Product</td>
<td></td>
</tr>
<tr>
<td>Ratio</td>
<td></td>
</tr>
<tr>
<td>Reciprocal</td>
<td></td>
</tr>
<tr>
<td>Rescale</td>
<td></td>
</tr>
<tr>
<td>Roof</td>
<td></td>
</tr>
<tr>
<td>SinXOverX</td>
<td></td>
</tr>
<tr>
<td>Square</td>
<td></td>
</tr>
<tr>
<td>SquareRoot</td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td></td>
</tr>
<tr>
<td>Trend</td>
<td></td>
</tr>
<tr>
<td>Zoom</td>
<td></td>
</tr>
</tbody>
</table>
Description
Sets/Queries the first source of the first operator in Fx. Note that the two possible sources of Operator1 are Source1 and Source2. Source3 is the second source to Operator2, with the first source of Operator2 being the output of Operator1. Note that the list of available sources is dependent upon the instrument model, and it's installed software options.

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Define the first source of math function F1 as C3.
app.Math.F1.Source1 = "C3"

Values

<table>
<thead>
<tr>
<th>C1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td></td>
</tr>
<tr>
<td>F3</td>
<td></td>
</tr>
<tr>
<td>F4</td>
<td></td>
</tr>
<tr>
<td>F5</td>
<td></td>
</tr>
<tr>
<td>F6</td>
<td></td>
</tr>
<tr>
<td>F7</td>
<td></td>
</tr>
<tr>
<td>F8</td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td></td>
</tr>
<tr>
<td>P6</td>
<td></td>
</tr>
<tr>
<td>P7</td>
<td></td>
</tr>
<tr>
<td>P8</td>
<td></td>
</tr>
<tr>
<td>ScanHisto</td>
<td></td>
</tr>
<tr>
<td>ScanOverlay</td>
<td></td>
</tr>
<tr>
<td>TDRN</td>
<td></td>
</tr>
<tr>
<td>Z1</td>
<td></td>
</tr>
<tr>
<td>Z2</td>
<td></td>
</tr>
<tr>
<td>Z3</td>
<td></td>
</tr>
<tr>
<td>Z4</td>
<td></td>
</tr>
</tbody>
</table>
DoResetZoom  

**Description**  
Resets the zoom state of math trace Fx.

**Example**  
' Visual Basic Script  
Set app = CreateObject("LeCroy.XStreamDSO")

' Reset zoom of math function F3.  
app.Math.F3.DoResetZoom

View  

**Description**  
Sets/Queries whether the trace of math function Fx is visible. Note that even when math traces are not visible, but are being used as inputs to other math functions and/or measurements, they are computed.

**Example**  
' Visual Basic Script  
Set app = CreateObject("LeCroy.XStreamDSO")

' Show math trace F3.  

DoStoreToMemoryTrace  

**Description**  
Store data from math function Fx to a memory trace.  
Destination for F1 will be M1, F2 will be M2, etc.

**Example**  
' Visual Basic Script  
Set app = CreateObject("LeCroy.XStreamDSO")

' Store math function F2 to a memory trace.  
app.Math.F2.DoStoreToMemoryTrace

**OPERATOR1SETUP**  

This node is dynamically created, and will contain the controls for the operator currently selected into Operator1.  
See the Math/Measure Control reference at the end of this manual for a list of these controls.

**RESULT**  

Properties of the type xxxx.Out.Result.yyy are those of the last completed acquisition. They are not affected if other cvars are changed after that acquisition was completed. This distinction between "Out.Result" properties and other cvars is most important when the trigger mode is Single or Stopped. You should treat "Out.Result" properties as read-

3-63
Control Reference

Chapter Three

For a detailed description of all properties available for the output of a Math Function, please see Chapter 1.

ZOOM

This set of variables controls the zoom functions for math trace Fx.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>HorPos</td>
<td>Double</td>
</tr>
<tr>
<td>HorZoom</td>
<td>Double</td>
</tr>
<tr>
<td>ResetZoom</td>
<td>Action</td>
</tr>
<tr>
<td>VariableHorZoom</td>
<td>Bool</td>
</tr>
<tr>
<td>VariableVerZoom</td>
<td>Bool</td>
</tr>
<tr>
<td>VerPos</td>
<td>Double</td>
</tr>
<tr>
<td>VerZoom</td>
<td>Double</td>
</tr>
</tbody>
</table>

**Example**

```vbs
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Turn on trace F1, will default to Zoom-Only
app.Math.F1.View = True
app.Math.F1.Source1 = "C1"

' Zoom trace F1 by a factor of 2 horizontally and vertically
```

**ResetZoom**

**Action**

**Description**

Reset the trace Fx to x1 zoom and zero offset in both axes, so that it is identical to its input trace.

**VariableVerZoom**

**Bool**

**Description**

Sets/Queries the ability to zoom vertically by a continuously variable factor. Note that if a vertical zoom of 0.9 is set, while variable zoom is off, the vertical zoom will be set to 1.0. If the variable zoom is then enabled, the factor of 0.9 will have been remembered, and it will be used. Note that the previous value will not be remembered during a power-cycle.
### VariableHorZoom

**Description**
Sets/Queries the ability to zoom horizontally by a continuously variable factor. Note that if a horizontal zoom of 0.9 is set, while variable zoom is off, the horizontal zoom will be set to 1.0. If the variable zoom is then enabled, the factor of 0.9 will have been remembered, and it will be used. Note that the previous value will not be remembered during a power-cycle.

### VerZoom

**Double**

**Range** From 0.1 to 100 step (8 digits)

**Description**
Sets/Queries the vertical magnification of the trace Fx. The magnification will be in a 1 2 5 10 sequence unless VariableVerZoom has been set to True, in which case it will be continuously variable.

### VerPos

**Double**

**Range** From -1.5 to 1.5 step (8 digits)

**Description**
Sets/Queries the vertical position of center of the grid on the zoomed trace Fx. The unit of measurement is the screen height, that is, 0.375 means a shift of three of the eight divisions. A positive value moves the trace downwards.

### HorZoom

**Double**

**Range** From 0.1 to 1e+006 step (8 digits)

**Description**
Sets/Queries the horizontal magnification of the trace Fx. The magnification will be in a 1 2 5 10 sequence unless variable horizontal magnification has been set.

### HorPos

**Double**

**Range** From -0.5 to 0.5 step (8 digits)

**Description**
Sets/Queries the horizontal position of center of the grid on the zoomed trace Fx. The unit of measurement is the screen width, that is, 0.3 means a shift of three of the ten divisions. A positive value moves the trace to the left.
This set of variables controls the display of data in X vs. Y mode. Only Valid when the instrument is in XY, XYSingle, or XYDual display modes.

<table>
<thead>
<tr>
<th>ClearSweeps</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>InputX</td>
<td>Enum</td>
</tr>
<tr>
<td>InputY</td>
<td>Enum</td>
</tr>
<tr>
<td>Persisted</td>
<td>Bool</td>
</tr>
<tr>
<td>PersistenceSaturation</td>
<td>Integer</td>
</tr>
<tr>
<td>PersistenceTime</td>
<td>Enum</td>
</tr>
<tr>
<td>PersistenceViewOn</td>
<td>Bool</td>
</tr>
<tr>
<td>ShowLastTrace</td>
<td>Bool</td>
</tr>
</tbody>
</table>

Example

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Switch to XY+Dual Grid Mode
app.Display.GridMode = "XYDual"

' Configure XY to show C1 vs. C2 in 3D Persistence mode
app.Math.XY.InputX = "C1"
app.Math.XY.InputY = "C2"
app.Math

ClearSweeps  

Description  
Clears persistence X-Y plot.

Persisted  

Bool

Description  
Sets/Queries the persisted state of the X-Y plot. If the Display.LockPersistence control is set to 'AllLocked' then the persisted state of all displayed waveforms will be the same. If the Display.LockPersistence control is set to 'PerTrace' then the persisted state of each waveform may be independently controlled.

PersistenceSaturation  

Integer

Range From 0 to 100 step 1

Description  
Sets/Queries the saturation threshold for persisted X-Y plot. All information at this level or above will be recorded with the same color or intensity. See the general description above for a discussion of the locked and unlocked persistence modes.
Chapter Three

Control Reference

ShowLastTrace

Description
Sets/Queries the state of the Show Last Trace control. If True then when this trace is displayed in persistence mode the last acquired waveform will be superimposed on the accumulating persistence map.

See the general description above for a discussion of the locked and unlocked persistence modes.

PersistenceTime

Description
Sets/Queries the state of the Persistence Time control. Controls the persistence decay time for the Xy persistence. See the general description above for a discussion of the locked and unlocked persistence modes.

Values

<table>
<thead>
<tr>
<th>Values</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5s</td>
<td></td>
</tr>
<tr>
<td>10s</td>
<td></td>
</tr>
<tr>
<td>1s</td>
<td></td>
</tr>
<tr>
<td>20s</td>
<td></td>
</tr>
<tr>
<td>2s</td>
<td></td>
</tr>
<tr>
<td>5s</td>
<td></td>
</tr>
<tr>
<td>Infinite</td>
<td></td>
</tr>
</tbody>
</table>

PersistenceViewOn

Description
Query the state of the persistence view.
**InputX**

**Description**
Sets/Queries the name of the input channel for the X axis of the X-Y plot.

**Values**

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
</tr>
<tr>
<td>C2</td>
</tr>
<tr>
<td>C3</td>
</tr>
<tr>
<td>C4</td>
</tr>
<tr>
<td>F1</td>
</tr>
<tr>
<td>F2</td>
</tr>
<tr>
<td>F3</td>
</tr>
<tr>
<td>F4</td>
</tr>
<tr>
<td>F5</td>
</tr>
<tr>
<td>F6</td>
</tr>
<tr>
<td>F7</td>
</tr>
<tr>
<td>F8</td>
</tr>
<tr>
<td>M1</td>
</tr>
<tr>
<td>M2</td>
</tr>
<tr>
<td>M3</td>
</tr>
<tr>
<td>M4</td>
</tr>
<tr>
<td>ScanHisto</td>
</tr>
<tr>
<td>ScanOverlay</td>
</tr>
<tr>
<td>TDRN</td>
</tr>
<tr>
<td>Z1</td>
</tr>
<tr>
<td>Z2</td>
</tr>
<tr>
<td>Z3</td>
</tr>
<tr>
<td>Z4</td>
</tr>
</tbody>
</table>
Chapter Three

Control Reference

InputY

**Description**
Sets/Queries the name of the input channel for the Y axis of the X-Y plot.

**Values**

<table>
<thead>
<tr>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
<th>F6</th>
<th>F7</th>
<th>F8</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>ScanHisto</th>
<th>ScanOverlay</th>
<th>TDRN</th>
<th>Z1</th>
<th>Z2</th>
<th>Z3</th>
<th>Z4</th>
</tr>
</thead>
</table>

**RESULT**

Properties of the type xxxx.Out.Result.yyyy are those of the last completed acquisition. They are not affected if other cvars are changed after that acquisition was completed. This distinction between "Out.Result" properties and other cvars is most important when the trigger mode is Single or Stopped. You should treat "Out.Result" properties as read-only.

Note that this XY result object is very similar, but not identical to the result object exposed by the channel and math traces. The differences are due to the fact that the XY trace returns pairs of data values, one for X, one for Y.

For a detailed description of all properties available for the output of an XY trace, please see Chapter 1.

**MEASURE**

Variables of the form app.Measure control the parameters P1 through P8, and their associated statistical results and histicons.
Names of the forms `app.Measure.Measure("Premote").xxxx` and `app.Measure.Measure("Px").xxxx` are aliases of simpler names which are described in this section of the manual. Examples of alias pairs are as follows -

- `app.Measure.Measure("Premote").OutResult` is equivalent to `app.Measure."Premote".OutResult`

Please see under `Acquisition.Channels` for a programming example.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClearAll</td>
<td>Action</td>
<td></td>
</tr>
<tr>
<td>ClearAllHelpMarkers</td>
<td>Action</td>
<td></td>
</tr>
<tr>
<td>ClearSweeps</td>
<td>Action</td>
<td></td>
</tr>
<tr>
<td>DataCoding</td>
<td>Enum</td>
<td></td>
</tr>
<tr>
<td>EyeAperture</td>
<td>Double</td>
<td></td>
</tr>
<tr>
<td>EyeSource1</td>
<td>Enum</td>
<td></td>
</tr>
<tr>
<td>EyeSource2</td>
<td>Enum</td>
<td></td>
</tr>
<tr>
<td>HelpMarkers</td>
<td>Enum</td>
<td></td>
</tr>
<tr>
<td>HistoOn</td>
<td>Bool</td>
<td></td>
</tr>
<tr>
<td>MeasureSet</td>
<td>Enum</td>
<td></td>
</tr>
<tr>
<td>SetGateToDefault</td>
<td>Action</td>
<td></td>
</tr>
<tr>
<td>ShowAllHelpMarkers</td>
<td>Action</td>
<td></td>
</tr>
<tr>
<td>ShowEyeMarkers</td>
<td>Bool</td>
<td></td>
</tr>
<tr>
<td>ShowMeasure</td>
<td>Bool</td>
<td></td>
</tr>
<tr>
<td>StatsOn</td>
<td>Bool</td>
<td></td>
</tr>
<tr>
<td>StdGateStart</td>
<td>Double</td>
<td></td>
</tr>
<tr>
<td>StdGateStop</td>
<td>Double</td>
<td></td>
</tr>
<tr>
<td>StdSource</td>
<td>Enum</td>
<td></td>
</tr>
<tr>
<td>UseCustomThresh</td>
<td>Bool</td>
<td></td>
</tr>
</tbody>
</table>

**Example**

' Visual Basic Script

```visualbasic
Set app = CreateObject("LeCroy.XStreamDSO")

' get into the custom parameter mode
app.Measure.MeasureMode = "MyMeasure"
app.Measure.ClearAll
app.Measure.StatsOn = True
app.Measure.HistoOn = False

' Configure P1 to measure a
```

**StatsOn**

**Description**

Sets/Queries the visibility of parameter statistics. Note: the statistics are accumulated whether the view of them is on or not, so you needn't have StatsOn = "On" to collect statistics.
HistoOn

**Description**
Sets/Queries the visibility of the histicons of the parameters which are viewed.

---

StdSource

**Description**
Sets/Queries the channel which is the source of ALL standard voltage or time parameters. Note that when in 'My Measure' mode each parameter has its own Source selection, and this setting is ignored.

**Values**

<table>
<thead>
<tr>
<th>C1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td></td>
</tr>
<tr>
<td>F3</td>
<td></td>
</tr>
<tr>
<td>F4</td>
<td></td>
</tr>
<tr>
<td>F5</td>
<td></td>
</tr>
<tr>
<td>F6</td>
<td></td>
</tr>
<tr>
<td>F7</td>
<td></td>
</tr>
<tr>
<td>F8</td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td></td>
</tr>
<tr>
<td>ScanHisto</td>
<td></td>
</tr>
<tr>
<td>ScanOverlay</td>
<td></td>
</tr>
<tr>
<td>TDRN</td>
<td></td>
</tr>
<tr>
<td>Z1</td>
<td></td>
</tr>
<tr>
<td>Z2</td>
<td></td>
</tr>
<tr>
<td>Z3</td>
<td></td>
</tr>
<tr>
<td>Z4</td>
<td></td>
</tr>
</tbody>
</table>
Chapter Three  

Control Reference

**HelpMarkers**

**Description**
Sets/Queries the level of detail for help markers (if indeed any of the selected parameter definitions have help markers).

These markers are displayed on the source traces, and only if those traces are viewed simultaneously with the parameter measurements.

Note: this setting is global for all Px

**Values**

<table>
<thead>
<tr>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detailed</td>
<td>Detailed help markers</td>
</tr>
<tr>
<td>Off</td>
<td>No help markers</td>
</tr>
<tr>
<td>Simple</td>
<td>Simple help markers</td>
</tr>
</tbody>
</table>

**MeasureSet**

**Description**
Defines the mode in which the measurement system is working.

**Values**

<table>
<thead>
<tr>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EyeMeasure</td>
<td>Custom list, each chosen from the list of available measurements.</td>
</tr>
<tr>
<td>MyMeasure</td>
<td>Standard Horizontal Measurements</td>
</tr>
<tr>
<td>StdHorizontal</td>
<td>Standard Vertical Measurements</td>
</tr>
<tr>
<td>StdVertical</td>
<td></td>
</tr>
</tbody>
</table>

**ShowMeasure**

**Description**
Defines whether the measure results table is displayed or not.

**ShowAllHelpMarkers**

**Description**
Force all 'HelpMarkers' on.
(HelpMarkers are the on-trace annotation of measurement setup and results)
### ClearAllHelpMarkers

**Description**
Force all ‘HelpMarkers’ off.
(HelpMarkers are the on-trace annotation of measurement setup and results)

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClearAll</td>
<td></td>
</tr>
</tbody>
</table>

### StdGateStart

**Double**

**Range** From 0 to 10 step 0.01

**Description**
Sets/Queries the position of the left hand limit of the measure gate (n divisions).
Valid only when in either Std. Vertical or Std. Horizontal measurement modes. For MyMeasure see the equivalent controls under Px.

<table>
<thead>
<tr>
<th>Double</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>StdGateStart</td>
<td></td>
</tr>
</tbody>
</table>

### StdGateStop

**Double**

**Range** From 0 to 10 step 0.01

**Description**
Sets/Queries the position of the right hand limit of the measure gate (in divisions). Valid only when in either Std. Vertical or Std. Horizontal measurement modes. For MyMeasure see the equivalent controls under Px.

<table>
<thead>
<tr>
<th>Double</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>StdGateStop</td>
<td></td>
</tr>
</tbody>
</table>

### ClearSweeps

**Action**

**Description**
Clears the accumulated statistics for parameters P1 to P8 as well as the accumulated statistics for their associated histicons.

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClearSweeps</td>
<td></td>
</tr>
</tbody>
</table>

### ClearAll

**Action**

**Description**
Resets all parameter setups, turning each of the parameters view to "off", the MeasurementType to "measure" and the selected paramEngine to "Null".

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClearAll</td>
<td></td>
</tr>
</tbody>
</table>
Chapter Three

Control Reference

SetGateToDefault

**Action**

**Description**
Sets the measure gate to its default state. Valid only when in either Std. Vertical or Std. Horizontal measurement modes. For MyMeasure see the equivalent controls under Px.

DataCoding

**Enum**

**Description**
Data coding standard for measurements made in 'Eye Measure' mode.

**Values**

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRZ</td>
</tr>
<tr>
<td>RZ</td>
</tr>
</tbody>
</table>

UseCustomThresh

**Bool**

**Description**
If True, the eye aperature may be specified when in 'Eye Measure' mode.

EyeAperture

**Double**

**Range** From 0 to 100 step 0.1

**Description**
Eye Aperature, for measurements in 'Eye Measure' mode. Valid only when UseCustomThresh is set to true.

ShowEyeMarkers

**Bool**

**Description**
Set to true to show marker annotation when in 'Eye Measure' mode.
Chapter Three

EyeSource1

### Description
First source trace for measurements made in 'Eye Measure' mode.

### Values

<table>
<thead>
<tr>
<th>Values</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td></td>
</tr>
</tbody>
</table>

EyeSource2

### Description
Second source trace for measurements made in 'Eye Measure' mode.

### Values

<table>
<thead>
<tr>
<th>Values</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td></td>
</tr>
</tbody>
</table>

**MEASURE**

Names of the forms `app.Measure.Measure("Premote").xxxx` and `app.Measure.Measure("Px").xxxx` are aliases of simpler names which are described in the section of the manual which is devoted to `app.Measure`. Examples of alias pairs are as follows:

- `app.Measure.Measure("Premote").OutResult` is equivalent to `app.Measure."Premote".OutResult`

Please see under `app.Acquisition.Channels("Cx")` for a programming example.

**PX**

This set of variables controls the parameters P1 through P8, (when the MeasureMode is "MyMeasure", otherwise these are predefined) and the statistical results and histicons which depend on them.

<table>
<thead>
<tr>
<th>ClearSweeps</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>GateByRange</td>
<td>Bool</td>
</tr>
</tbody>
</table>
Chapter Three

Control Reference

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>GateByWform</td>
<td>Bool</td>
</tr>
<tr>
<td>GateStart</td>
<td>Double</td>
</tr>
<tr>
<td>GateStop</td>
<td>Double</td>
</tr>
<tr>
<td>HelpAlwaysOn</td>
<td>Bool</td>
</tr>
<tr>
<td>MeasurementType</td>
<td>Enum</td>
</tr>
<tr>
<td>ParamEngine</td>
<td>Enum</td>
</tr>
<tr>
<td>Source1</td>
<td>Enum</td>
</tr>
</tbody>
</table>

Example

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")
app.Measure.MeasureMode = "MyMeasure"

'Set parameter P1 to math on parameters.
App.Measure.P1.MeasurementType = "math"

ClearSweeps

Description
Clear any accumulated results for this parameter only.

HelpAlwaysOn

Description
Defines whether Help Markers are always displayed for this measurement, even when the measurement dialog is closed.

MeasurementType

Description
Sets/Queries the measurement type of the parameter Px.

Values

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EyeMeasure</td>
<td>Standard measurement mode (parametric of a trace waveform)</td>
</tr>
</tbody>
</table>
### Description
Sets/Queries the parameter (measurement on a trace) for Px. This setting applies only if the MeasurementType control is set to "measure".

### Values

<table>
<thead>
<tr>
<th>Enum</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplitude</td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td></td>
</tr>
<tr>
<td>Base</td>
<td></td>
</tr>
<tr>
<td>Cycles</td>
<td></td>
</tr>
<tr>
<td>Delay</td>
<td></td>
</tr>
<tr>
<td>DeltaDelay</td>
<td></td>
</tr>
<tr>
<td>DeltaTimeAtLevel</td>
<td></td>
</tr>
<tr>
<td>DeltaTriggerTime</td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td></td>
</tr>
<tr>
<td>DutyCycle</td>
<td></td>
</tr>
<tr>
<td>ExtinctionRatio</td>
<td></td>
</tr>
<tr>
<td>EyeACRMS</td>
<td></td>
</tr>
<tr>
<td>EyeAmplitude</td>
<td></td>
</tr>
<tr>
<td>EyeBER</td>
<td></td>
</tr>
<tr>
<td>EyeBitRate</td>
<td></td>
</tr>
<tr>
<td>EyeBitTime</td>
<td></td>
</tr>
<tr>
<td>EyeCrossing</td>
<td></td>
</tr>
<tr>
<td>EyeCrossingNegative</td>
<td></td>
</tr>
<tr>
<td>EyeCrossingPositive</td>
<td></td>
</tr>
<tr>
<td>EyeCyclicArea</td>
<td></td>
</tr>
<tr>
<td>EyeDelay</td>
<td></td>
</tr>
<tr>
<td>EyeDeltaDelay</td>
<td></td>
</tr>
<tr>
<td>EyeFallTime</td>
<td></td>
</tr>
<tr>
<td>EyeHeight</td>
<td></td>
</tr>
<tr>
<td>EyeMean</td>
<td></td>
</tr>
<tr>
<td>EyeOneLevel</td>
<td></td>
</tr>
<tr>
<td>EyeOpeningFactor</td>
<td></td>
</tr>
<tr>
<td>EyeOvershootNegative</td>
<td></td>
</tr>
<tr>
<td>EyeOvershootPositive</td>
<td></td>
</tr>
<tr>
<td>EyePkpkJitter</td>
<td></td>
</tr>
<tr>
<td>EyePkPkNoise</td>
<td></td>
</tr>
<tr>
<td>EyePulseWid</td>
<td></td>
</tr>
<tr>
<td>EyeQFactor</td>
<td></td>
</tr>
<tr>
<td>EyeRiseTime</td>
<td></td>
</tr>
<tr>
<td>EyeRMSJitter</td>
<td></td>
</tr>
<tr>
<td>EyeSDEVNoise</td>
<td></td>
</tr>
<tr>
<td>EyeSignalToNoise</td>
<td></td>
</tr>
<tr>
<td>EyeSuppressionRatio</td>
<td></td>
</tr>
<tr>
<td>EyeWidth</td>
<td></td>
</tr>
<tr>
<td>Metric</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td></td>
</tr>
<tr>
<td>EyeZeroLevel</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>Fall8020</td>
<td></td>
</tr>
<tr>
<td>FallAtLevel</td>
<td></td>
</tr>
<tr>
<td>FirstPoint</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>FullWidthAtHalfMaximum</td>
<td></td>
</tr>
<tr>
<td>FullWidthAtXX</td>
<td></td>
</tr>
<tr>
<td>HistogramAmplitude</td>
<td></td>
</tr>
<tr>
<td>HistogramBase</td>
<td></td>
</tr>
<tr>
<td>HistogramMaximum</td>
<td></td>
</tr>
<tr>
<td>HistogramMean</td>
<td></td>
</tr>
<tr>
<td>HistogramMedian</td>
<td></td>
</tr>
<tr>
<td>HistogramMid</td>
<td></td>
</tr>
<tr>
<td>HistogramMinimum</td>
<td></td>
</tr>
<tr>
<td>HistogramRms</td>
<td></td>
</tr>
<tr>
<td>HistogramSdev</td>
<td></td>
</tr>
<tr>
<td>HistogramTop</td>
<td></td>
</tr>
<tr>
<td>LastPoint</td>
<td></td>
</tr>
<tr>
<td>LevelMin</td>
<td></td>
</tr>
<tr>
<td>MATLABParameter</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td></td>
</tr>
<tr>
<td>MaximumPopulation</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td></td>
</tr>
<tr>
<td>npoints</td>
<td></td>
</tr>
<tr>
<td>Null</td>
<td></td>
</tr>
<tr>
<td>OvershootNegative</td>
<td></td>
</tr>
<tr>
<td>OvershootPositive</td>
<td></td>
</tr>
<tr>
<td>Peaks</td>
<td></td>
</tr>
<tr>
<td>PeakToPeak</td>
<td></td>
</tr>
<tr>
<td>Percentile</td>
<td></td>
</tr>
<tr>
<td>Period</td>
<td></td>
</tr>
<tr>
<td>PersistArea</td>
<td></td>
</tr>
<tr>
<td>PersistDCD</td>
<td></td>
</tr>
<tr>
<td>PersistDutyCycle</td>
<td></td>
</tr>
<tr>
<td>PersistMax</td>
<td></td>
</tr>
<tr>
<td>PersistMean</td>
<td></td>
</tr>
<tr>
<td>PersistMid</td>
<td></td>
</tr>
<tr>
<td>PersistMin</td>
<td></td>
</tr>
<tr>
<td>PersistPkPk</td>
<td></td>
</tr>
<tr>
<td>PersistPulseSymmetry</td>
<td></td>
</tr>
<tr>
<td>PersistRMS</td>
<td></td>
</tr>
<tr>
<td>Phase</td>
<td></td>
</tr>
<tr>
<td>Metric</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>PopulationAtX</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td></td>
</tr>
<tr>
<td>Rise</td>
<td></td>
</tr>
<tr>
<td>Rise2080</td>
<td></td>
</tr>
<tr>
<td>RiseAtLevel</td>
<td></td>
</tr>
<tr>
<td>RootMeanSquare</td>
<td></td>
</tr>
<tr>
<td>StandardDeviation</td>
<td></td>
</tr>
<tr>
<td>TDRCapInd</td>
<td></td>
</tr>
<tr>
<td>TIE</td>
<td></td>
</tr>
<tr>
<td>TimeAtLevel</td>
<td></td>
</tr>
<tr>
<td>Top</td>
<td></td>
</tr>
<tr>
<td>TotalPopulation</td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td></td>
</tr>
<tr>
<td>WidthNegative</td>
<td></td>
</tr>
<tr>
<td>XAtMaximum</td>
<td></td>
</tr>
<tr>
<td>XAtMinimum</td>
<td></td>
</tr>
<tr>
<td>XAtPeak</td>
<td></td>
</tr>
</tbody>
</table>
Sets/Queries the first trace source of the parameter Px. Used only when MeasurementType = "measure", for MeasurementType = "math", refer to PSource1.

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
</tr>
<tr>
<td>C2</td>
</tr>
<tr>
<td>C3</td>
</tr>
<tr>
<td>C4</td>
</tr>
<tr>
<td>F1</td>
</tr>
<tr>
<td>F2</td>
</tr>
<tr>
<td>F3</td>
</tr>
<tr>
<td>F4</td>
</tr>
<tr>
<td>F5</td>
</tr>
<tr>
<td>F6</td>
</tr>
<tr>
<td>F7</td>
</tr>
<tr>
<td>F8</td>
</tr>
<tr>
<td>M1</td>
</tr>
<tr>
<td>M2</td>
</tr>
<tr>
<td>M3</td>
</tr>
<tr>
<td>M4</td>
</tr>
<tr>
<td>ScanHisto</td>
</tr>
<tr>
<td>ScanOverlay</td>
</tr>
<tr>
<td>TDRN</td>
</tr>
<tr>
<td>Z1</td>
</tr>
<tr>
<td>Z2</td>
</tr>
<tr>
<td>Z3</td>
</tr>
<tr>
<td>Z4</td>
</tr>
</tbody>
</table>

**GateStart**

*Type:* Double

**Range**

From 0 to 10 step 0.01

**Description**

Sets/Reads the position of the left hand edge of the measure gate for parameter Px.

**GateStop**

*Type:* Double

**Range**

From 0 to 10 step 0.01

**Description**

Sets/Reads the position of the right hand edge of the measure gate for parameter Px.
Chapter Three

GateByWform

*Description*
If True, measurements are gated by the state of the waveform defined by the WformSource control.

GateByRange

*Description*
If True, only measurements who's value(s) fall between the limits defined by the LowerLimit and UpperLimit controls, are accepted.

RESULT

\texttt{app.Measure.Px.histo.Result}

RESULT

\texttt{app.Measure.Px.last.Result}

RESULT

\texttt{app.Measure.Px.max.Result}

RESULT

\texttt{app.Measure.Px.mean.Result}

RESULT

\texttt{app.Measure.Px.min.Result}
RESULT

app.Measure.Px.num.Result

OPERATOR

app.Measure.Px.Operator

This path specifies that the selected ParamEngine or ArithEngine control variables are "here"

RESULT

app.Measure.Px.Out.Result

Properties of the type xxxx.Out.Result.yyy are those of the last completed acquisition. They are not affected if other cvars are changed after that acquisition was completed. This distinction between "Out.Result" properties and other cvars is most important when the trigger mode is Single or Stopped. You should treat "Out.Result" properties as read-only.

RESULT

app.Measure.Px.sdev.Result

STATISTICS

app.Measure.Px.Statistics

This set of variables controls the statistical summaries that are provided for all the parameters.

MEMORY

app.Memory

Variables of the form app.Memory.xxxx control the memories M1 through M4.

Names of the form app.Memory.Memories("Mx").xxxx are aliases of simpler names which are described in this section of the manual. Examples of alias pairs are as follows -

app.Memory.Memories("Mx").Zoom is equivalent to app.Memory.Mx.Zoom
Please see under app.Acquisition.Channels("Cx") for a programming example.

<table>
<thead>
<tr>
<th>ClearAllMem</th>
<th>Action</th>
</tr>
</thead>
</table>

**ClearAllMem**

**Description**
Cleans the contents of all trace memories.

**Example**

```vbscript
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")
' Clear the contents of all trace memories.
app.Memory.ClearAllMem
```

**MEMORIES**

Names of the form app.Memory.Memories("Mx").xxxx are aliases of simpler names which are described in the section of the manual which is devoted to app.Memory. Examples of alias pairs are as follows -

- app.Memory.Memories("Mx").Zoom is equivalent to app.Memory.Mx.Zoom

Please see under Acquisition.Channels for a programming example.

**MX**

This set of variables controls the memories M1 through M4.

<table>
<thead>
<tr>
<th>ClearMem</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy</td>
<td>Action</td>
</tr>
</tbody>
</table>

**View**

**Description**
Sets/Queries whether memory trace Mx is visible.
## UseGrid

**Range**
Any number of characters

**Description**
Sets/Queries the grid used for memory trace Mx.

**Example**

```
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set memory trace M2 to use grid YT3.
app.Memory.M2.UseGrid = "YT3"
```

## PersistenceViewOn

**Description**
Query the state of the persistence view.

## LabelsText

**Range**
Any number of characters

## LabelsPosition

**Range**
Any number of characters

**Description**
Sets / Queries the horizontal position of the label attached to the acquisition trace Cx. The unit of measurement is the unit of the horizontal scale. The measurement is made from the trigger point. Note that this control is a string, not a numeric value. This allows multiple labels to be positioned, as shown in the example below.

## ViewLabels

**Description**
Sets/Queries whether labels are visible for trace Mx.
ClearMem

**Description**
Initiates a clear memory operation for memory Mx.

Copy

**Description**
Copy the trace specified by the Source1 control into this memory.

UserText

**Range**
Any number of characters

**Description**
Text field, used to attach arbitrary comments to a memory waveform.
Description
Source trace for Copy operations (see ‘Copy’ control)

Values

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
</tr>
<tr>
<td>C2</td>
</tr>
<tr>
<td>C3</td>
</tr>
<tr>
<td>C4</td>
</tr>
<tr>
<td>F1</td>
</tr>
<tr>
<td>F2</td>
</tr>
<tr>
<td>F3</td>
</tr>
<tr>
<td>F4</td>
</tr>
<tr>
<td>F5</td>
</tr>
<tr>
<td>F6</td>
</tr>
<tr>
<td>F7</td>
</tr>
<tr>
<td>F8</td>
</tr>
<tr>
<td>M2</td>
</tr>
<tr>
<td>M3</td>
</tr>
<tr>
<td>M4</td>
</tr>
<tr>
<td>ScanHist</td>
</tr>
<tr>
<td>ScanOverlay</td>
</tr>
<tr>
<td>TDRN</td>
</tr>
<tr>
<td>Z1</td>
</tr>
<tr>
<td>Z2</td>
</tr>
<tr>
<td>Z3</td>
</tr>
<tr>
<td>Z4</td>
</tr>
</tbody>
</table>

RESULT

See app.Acquisition.Cx.Out.Result for a definition of methods and properties used to access the Mx waveform result.

ZOOM

This set of variables controls zooming of the memory traces M1 through M4.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>HorPos</td>
<td>Double</td>
</tr>
<tr>
<td>HorZoom</td>
<td>Double</td>
</tr>
<tr>
<td>ResetZoom</td>
<td>Action</td>
</tr>
<tr>
<td>VariableHorZoom</td>
<td>Bool</td>
</tr>
<tr>
<td>VariableVerZoom</td>
<td>Bool</td>
</tr>
<tr>
<td>VerPos</td>
<td>Double</td>
</tr>
<tr>
<td>VerZoom</td>
<td>Double</td>
</tr>
</tbody>
</table>
Example

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Save C1 into M1
app.SaveRecall.Waveform.SaveTo = "Memory"
app.SaveRecall.Waveform.SaveSource = "C1"
app.SaveRecall.Waveform.SaveDestination = "M1"
app.SaveRecall.Waveform.DoSave

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResetZoom</td>
<td>Resets the zoom for trace Mx.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VariableVerZoom</td>
<td>Bool</td>
<td>Sets/Queries the ability to zoom vertically by a continuously variable factor as opposed to a factor that follows a 1, 2, 5 sequence.</td>
</tr>
<tr>
<td>VariableHorZoom</td>
<td>Bool</td>
<td>Sets/Queries the ability to zoom horizontally by a continuously variable factor as opposed to a factor that follows a 1, 2, 5 sequence.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>Type</th>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VerZoom</td>
<td>Double</td>
<td>From 0.1 to 100 step (8 digits)</td>
<td>Sets/Queries the vertical magnification of the trace Mx. The magnification will be in a 1 2 5 10 sequence unless variable vertical magnification has been set.</td>
</tr>
</tbody>
</table>
Chapter Three

Control Reference

**VerPos**

**Range**
From -1.5 to 1.5 step (8 digits)

**Description**
Sets/Queries the vertical position of center of the grid on the zoomed trace Mx. The unit of measurement is the screen height, that is, 0.375 means a shift of three of the eight divisions. A positive value moves the trace downwards.

**HorZoom**

**Range**
From 0.1 to 1e+006 step (8 digits)

**Description**
Sets/Queries the horizontal magnification of the trace Mx. The magnification will be in a 1 2 5 10 sequence unless variable horizontal magnification has been set.

**HorPos**

**Range**
From -0.5 to 0.5 step (8 digits)

**Description**
Sets/Queries the horizontal position of center of the grid on the zoomed trace Mx. The unit of measurement is the screen width, that is, 0.3 means a shift of three of the ten divisions. A positive value moves the trace to the left.

**PASSFAIL**

Names of the forms app.PassFail("Qremote").xxxx and app.PassFail("Qx").xxxx are aliases of simpler names which are described in this section of the manual. Examples of alias pairs are as follows -


Please see under app.Acquisition.Channels("Cx") for a programming example.

<table>
<thead>
<tr>
<th>ActionOn</th>
<th>Enum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm</td>
<td>Bool</td>
</tr>
<tr>
<td>EnableActions</td>
<td>Bool</td>
</tr>
<tr>
<td>PredefinedConditions</td>
<td>Enum</td>
</tr>
<tr>
<td>PrintScreen</td>
<td>Bool</td>
</tr>
<tr>
<td>Save</td>
<td>Bool</td>
</tr>
<tr>
<td>Stop</td>
<td>Bool</td>
</tr>
<tr>
<td>StopAfter</td>
<td>Integer</td>
</tr>
<tr>
<td>StopTesting</td>
<td>Bool</td>
</tr>
<tr>
<td>SummaryView</td>
<td>Bool</td>
</tr>
<tr>
<td>Testing</td>
<td>Bool</td>
</tr>
</tbody>
</table>
Chapter Three

Example

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Setup Parameter P1 to be the amplitude of C1
app.Measure.MeasureMode = "MyMeasure"
app.Measure.P1.ParamEngine = "Ampl"
app.Measure.P1.Source1 = "C1"
app.Measure.P1.View = True

Testing

Description
Sets/Queries whether PassFail testing is on.

EnableActions

Description
Sets/Queries whether the selected actions will be executed if the selected PassFail condition is met.

PredefinedConditions

Description
Sets/Queries the logical criteria that must be met in a pass-fail test. For example, the condition AnyTrue means that the pass-fail criterion is met if at least one of the test conditions results in a True result.

Values

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>AllFalse</td>
</tr>
<tr>
<td>AllQ1ToQ4OrAllQ5ToQ8</td>
</tr>
<tr>
<td>AllTrue</td>
</tr>
<tr>
<td>AnyFalse</td>
</tr>
<tr>
<td>AnyQ1ToQ4AndAnyQ5T</td>
</tr>
<tr>
<td>AnyTrue</td>
</tr>
</tbody>
</table>

ActionOn

Description
Sets/Queries whether a Pass condition or a Fail condition will initiate the pre-selected actions.

Values

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fail</td>
</tr>
<tr>
<td>Pass</td>
</tr>
</tbody>
</table>
Chapter Three

Control Reference

Stop

Description
Sets/Queries whether Stop is included in the PassFail actions.

Alarm

Description
Sets/Queries whether Alarm is included in the PassFail actions.

PrintScreen

Description
Sets/Queries whether Print Screen is included in the PassFail actions.

Save

Description
Sets/Queries whether Save is included in the PassFail actions.

StopTesting

Description
If Enabled, testing will stop after a number of sweeps defined by the StopAfter control.

StopAfter

Range
From 1 to 1000000000 step 1

Description
Sets/Queries the maximum number of sweeps that will be acquired before testing is halted.
SummaryView

Description
Summary view

RESULT

app.PassFail.LastPass.Result

RESULT

app.PassFail.NumPassed.Result

QX

app.PassFail.Qx

This set of variables controls the tests Q1 through Q8 in the pass fail system.

<table>
<thead>
<tr>
<th>ClearSweeps</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConditionEngine</td>
<td>Enum</td>
</tr>
<tr>
<td>Equation</td>
<td>String</td>
</tr>
<tr>
<td>PSource1</td>
<td>Enum</td>
</tr>
<tr>
<td>ShortDescription</td>
<td>String</td>
</tr>
<tr>
<td>View</td>
<td>Bool</td>
</tr>
<tr>
<td>WSource2</td>
<td>Enum</td>
</tr>
</tbody>
</table>

View

Description
Sets/Queries whether pass-fail test Qx is visible.
ClearSweeps

Description
ClearSweeps

ConditionEngine

Description
Sets/Queries whether pass-fail test Qx uses mask testing or parameter comparison.

Values

<table>
<thead>
<tr>
<th>Values</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DualParamCompare</td>
<td></td>
</tr>
<tr>
<td>MaskTestCondition</td>
<td></td>
</tr>
<tr>
<td>ParameterCompare</td>
<td></td>
</tr>
</tbody>
</table>

Equation

Range
Any number of characters

Description
Inspects the equation for pass-fail test Qx. A typical equation would be "All P3 < 0.7071".

ShortDescription

Range
Any number of characters

Description
ShortDescription
### PSource1

**Enum**

<table>
<thead>
<tr>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSource1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
</tr>
<tr>
<td>P2</td>
</tr>
<tr>
<td>P3</td>
</tr>
<tr>
<td>P4</td>
</tr>
<tr>
<td>P5</td>
</tr>
<tr>
<td>P6</td>
</tr>
<tr>
<td>P7</td>
</tr>
<tr>
<td>P8</td>
</tr>
</tbody>
</table>

### WSource2

**Enum**

<table>
<thead>
<tr>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSource2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
</tr>
<tr>
<td>C2</td>
</tr>
<tr>
<td>C3</td>
</tr>
<tr>
<td>C4</td>
</tr>
<tr>
<td>F1</td>
</tr>
<tr>
<td>F2</td>
</tr>
<tr>
<td>F3</td>
</tr>
<tr>
<td>F4</td>
</tr>
<tr>
<td>F5</td>
</tr>
<tr>
<td>F6</td>
</tr>
<tr>
<td>F7</td>
</tr>
<tr>
<td>F8</td>
</tr>
<tr>
<td>M1</td>
</tr>
<tr>
<td>M2</td>
</tr>
<tr>
<td>M3</td>
</tr>
<tr>
<td>M4</td>
</tr>
<tr>
<td>ScanHisto</td>
</tr>
<tr>
<td>ScanOverlay</td>
</tr>
<tr>
<td>TDRN</td>
</tr>
<tr>
<td>Z1</td>
</tr>
<tr>
<td>Z2</td>
</tr>
<tr>
<td>Z3</td>
</tr>
<tr>
<td>Z4</td>
</tr>
</tbody>
</table>
Properties of the type xxxx.Out.Result.yyyy are those of the last completed acquisition. They are not affected if other cvars are changed after that acquisition was completed. This distinction between "Out.Result" properties and other cvars is most important when the trigger mode is Single or Stopped. You should treat "Out.Result" properties as read-only.

RESULT

```plaintext
app.PassFail.Rate.Result
```

RESULT

```plaintext
app.PassFail.Tests.Result
```

PREFERENCES

This set of variables controls user preferences for the instrument setup and operation.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>AudibleFeedback</td>
<td>Bool</td>
</tr>
<tr>
<td>CalibrationOption</td>
<td>Enum</td>
</tr>
<tr>
<td>EnhancedPrecisionMode</td>
<td>Bool</td>
</tr>
<tr>
<td>HorOffsetControl</td>
<td>Enum</td>
</tr>
<tr>
<td>OffsetControl</td>
<td>Enum</td>
</tr>
<tr>
<td>Performance</td>
<td>Enum</td>
</tr>
</tbody>
</table>

AudibleFeedback

**Description**

Sets/Queries whether audible feedback is enabled, to sound when a control is touched.

**Example**

```
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Turn on the audible feedback function.
app.Preferences.AudibleFeedback = True
```
Chapter Three

Control Reference

**Performance**

**Enum**

**Description**
Sets/Queries the variable value that control the Optimization of the instrument in terms of analysis or display.
When set to Analysis the display is given low priority and will update less frequently. Use this mode where analysis performance is much more important than display rate.

**Values**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis</td>
<td></td>
</tr>
<tr>
<td>AnalysisMid</td>
<td></td>
</tr>
<tr>
<td>Default</td>
<td></td>
</tr>
<tr>
<td>Display</td>
<td></td>
</tr>
<tr>
<td>DisplayMid</td>
<td></td>
</tr>
</tbody>
</table>

**OffsetControl**

**Enum**

**Description**
Sets/Queries whether Vertical Offset constant in Volts or Divisions when the vertical scale control is changed.

**Values**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Div</td>
<td></td>
</tr>
<tr>
<td>Volts</td>
<td></td>
</tr>
</tbody>
</table>

**HorOffsetControl**

**Enum**

**Description**
HorOffsetControl.

**Values**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Div</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td></td>
</tr>
</tbody>
</table>

**CalibrationOption**

**Enum**

**Values**

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ForBestAccuracy</td>
</tr>
</tbody>
</table>

**EnhancedPrecisionMode**

**Bool**

**Description**
EnhancedPrecisionMode
Chapter Three

EMAIL

This set of variables controls user preferences for the instrument e-mail system. E-Mail may be sent when the hardcopy button is pressed when the hardcopy system is appropriately configured. Two standards are supported, SMTP (Simple Mail Transport Protocol), and MAPI (Messaging Application Programming Interface).

<table>
<thead>
<tr>
<th>DefaultRecipient</th>
<th>String</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>Enum</td>
</tr>
<tr>
<td>OriginatorAddress</td>
<td>String</td>
</tr>
<tr>
<td>SendTestMail</td>
<td>Action</td>
</tr>
<tr>
<td>SMTPServer</td>
<td>String</td>
</tr>
</tbody>
</table>

Example

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Configure the originator and recipient addresses, replace these with appropriate values for your corporate network.
app.Preferences.EMail.DefaultRecipient = "recipientAddress@do"

Mode

Description
Sets/Queries the transmission mode for e-mail.

Example

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set e-Mail mode to MAPI.
app.Preferences.EMail.Mode = "MAPI"

Values

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAPI</td>
<td>Messaging Application Programming Interface (Uses Outlook Express by default)</td>
</tr>
<tr>
<td>SMTP</td>
<td>Simple Mail Transfer Protocol, requires an SMTP server</td>
</tr>
</tbody>
</table>

DefaultRecipient

Range      Any number of characters

Description
Sets/Queries the default recipient of e-mail transmissions.

SMTPServer

Range      Any number of characters

Description
Sets/Queries the name of the SMTP Server for e-mail. Ask your system administrator if you are unsure of what value to set this to.
Sets/Queries the originator address for e-mail. This may be any address, and will be used when the recipient replies to a mail, note that the instrument doesn't necessarily have to have its own E-Mail account in order to use this.

**OriginatorAddress**

<table>
<thead>
<tr>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any number of characters</td>
<td>Sets/Queries the originator address for e-mail. This may be any address, and will be used when the recipient replies to a mail, note that the instrument doesn't necessarily have to have its own E-Mail account in order to use this.</td>
</tr>
</tbody>
</table>

**SendTestMail**

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sends a message by e-mail to test the system.</td>
<td>Sends a message by e-mail to test the system.</td>
</tr>
</tbody>
</table>

**Example**

```
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Send an e-mail message to test the system.
app.Preferences.EMail.SendTestMail
```

**SAVERECALL**

**app.SaveRecall**

Controls for the Save/Recall subsystem. Includes nodes for saving and recalling both Waveforms and Panels (Setups).

**SETUP**

**app.SaveRecall.Setup**

Controls for Saving and Recalling instrument setups.

<table>
<thead>
<tr>
<th>Action/FileName/String</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DoRecallDefaultNvlPanel</td>
<td>Action</td>
</tr>
<tr>
<td>DoRecallDefaultPanel</td>
<td>Action</td>
</tr>
<tr>
<td>DoRecallPanel</td>
<td>Action</td>
</tr>
<tr>
<td>DoSavePanel</td>
<td>Action</td>
</tr>
<tr>
<td>InternalName1</td>
<td>String</td>
</tr>
<tr>
<td>InternalName2</td>
<td>String</td>
</tr>
<tr>
<td>InternalName3</td>
<td>String</td>
</tr>
<tr>
<td>InternalName4</td>
<td>String</td>
</tr>
<tr>
<td>InternalName5</td>
<td>String</td>
</tr>
<tr>
<td>InternalName6</td>
<td>String</td>
</tr>
<tr>
<td>PanelDir</td>
<td>FileName</td>
</tr>
<tr>
<td>PanelFilename</td>
<td>FileName</td>
</tr>
<tr>
<td>RecallInternal1</td>
<td>Action</td>
</tr>
<tr>
<td>RecallInternal2</td>
<td>Action</td>
</tr>
<tr>
<td>RecallInternal3</td>
<td>Action</td>
</tr>
</tbody>
</table>
Example

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Reset to default setup
app.SaveRecall.Setup.DoRecallDefaultPanel

' Store the current setup into the first of the 6 setup stores.
app.SaveRecall.Setup.InternalName1 = "My Setup1"

DoSavePanel

Description
Saves the current panel settings to the previously specified file. If the filename already exists, the file will be over-written without a prompt.

Example

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Create the filename for the next panel setup save.
app.SaveRecall.Setup.PanelFilename = "TestSave"

' Save the panel setup to the named file.
app.SaveRecall.Setup.DoSavePanel

SaveInternal1

Description
Saves the current instrument settings into internal panel memory 1.

Example

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Save the current settings into internal panel memory 1.
app.SaveRecall.Setup.SaveInternal1
<table>
<thead>
<tr>
<th>Description</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please see SaveInternal1.</td>
<td></td>
</tr>
</tbody>
</table>

**SaveInternal2**

**Description**

Please see SaveInternal1.

**SaveInternal3**

**Description**

Please see SaveInternal1.

**SaveInternal4**

**Description**

Please see SaveInternal1.

**SaveInternal5**

**Description**

Please see SaveInternal1.

**SaveInternal6**

**Description**

Please see SaveInternal1.

**DoRecallDefaultPanel**

**Description**

Recalls the factory set panel settings.

**Example**

```visualbasic
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Recall the factory default panel settings.
app.SaveRecall.Setup.DoRecallDefaultPanel
```
Chapter Three
Control Reference

DoRecallDefaultNvlPanel

Description
Recalls the factory set NVL (preference) panel settings. These are controls which are not affected when the default panel is recalled, and includes items such as the color preferences, remote control preferences, etc. Use with care!, especially when invoking via the VBS? Remote command via GPIB or TCP/IP, which could result in the controller being disconnected when the default port is selected.

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Recall the factory default nvl panel settings.
app.SaveRecall.Setup.DoRecallDefaultNvlPanel

DoRecallPanel

Description
Recall the panel file named in the PanelFilename control.

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Create the filename for the next panel setup to be recalled.
app.SaveRecall.Setup.PanelFilename = "Setup89"

' Recall the panel setup from the named file.
app.SaveRecall.Setup.DoRecallPanel

RecallInternal1

Description
Recall the settings which are stored in internal panel memory 1.

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Recall the settings from internal panel memory 1.
app.SaveRecall.Setup.RecallInternal1

RecallInternal2

Description
Please see RecallInternal1.
Chapter Three

RecallInternal3

Description
Please see RecallInternal1.

RecallInternal4

Description
Please see RecallInternal1.

RecallInternal5

Description
Please see RecallInternal1.

RecallInternal6

Description
Please see RecallInternal1.

PanelDir

FileName

Range Any number of characters

Description Directory in which setups are stored/recalled.

PanelFilename

FileName

Range Any number of characters

Description Sets/Queries the current filename for saving a panel setup. Note that a ‘.ls’ extension is automatically appended if not supplied.
<table>
<thead>
<tr>
<th>Control Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>InternalName1</td>
<td>Sets/Queries the name of internal panel setup memory 1.</td>
</tr>
<tr>
<td><strong>Range</strong></td>
<td>Any number of characters</td>
</tr>
<tr>
<td><strong>Description</strong></td>
<td>Please see InternalName1.</td>
</tr>
<tr>
<td>InternalName2</td>
<td>String</td>
</tr>
<tr>
<td><strong>Range</strong></td>
<td>Any number of characters</td>
</tr>
<tr>
<td><strong>Description</strong></td>
<td>Please see InternalName1.</td>
</tr>
<tr>
<td>InternalName3</td>
<td>String</td>
</tr>
<tr>
<td><strong>Range</strong></td>
<td>Any number of characters</td>
</tr>
<tr>
<td><strong>Description</strong></td>
<td>Please see InternalName1.</td>
</tr>
<tr>
<td>InternalName4</td>
<td>String</td>
</tr>
<tr>
<td><strong>Range</strong></td>
<td>Any number of characters</td>
</tr>
<tr>
<td><strong>Description</strong></td>
<td>Please see InternalName1.</td>
</tr>
<tr>
<td>InternalName5</td>
<td>String</td>
</tr>
<tr>
<td><strong>Range</strong></td>
<td>Any number of characters</td>
</tr>
<tr>
<td><strong>Description</strong></td>
<td>Please see InternalName1.</td>
</tr>
<tr>
<td>InternalName6</td>
<td>String</td>
</tr>
<tr>
<td><strong>Range</strong></td>
<td>Any number of characters</td>
</tr>
<tr>
<td><strong>Description</strong></td>
<td>Please see InternalName1.</td>
</tr>
</tbody>
</table>
Controls used to manage files and folders, including the ability to create and delete folders, and the ability to delete files.

<table>
<thead>
<tr>
<th>CreateDir</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>DeleteAll</td>
<td>Action</td>
</tr>
<tr>
<td>DeleteFile</td>
<td>Action</td>
</tr>
<tr>
<td>Directory</td>
<td>FileName</td>
</tr>
</tbody>
</table>

**Directory**

- **Range**: Any number of characters
- **Description**: Defines the directory which will be used for the operations in this automation node.

**DeleteAll**

- **Description**: Deletes all files in the directory specified by the Directory control without a cautionary prompt. Use with care! Files cannot be recovered if deleted accidentally.

**Example**

```vbscript
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Delete all files without showing a yes/no prompt.
app.SaveRecall.Utilities.Directory = "C:\MyDir"
app.SaveRecall.Utilities.DeleteAll
```

**DeleteFile**

- **Description**: Deletes the file named by the Filename control

**Example**

```vbscript
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Delete the named file
app.SaveRecall.Utilities.Filename = "C:\MyDir\MyFile.txt"
app.SaveRecall.Utilities.DeleteFile
```
Chapter Three

CreateDir

Description

Creates the directory specified in the Directory control.

Example

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Create a named directory
app.SaveRecall.Utilities.Directory = "C:\MyDir"
app.SaveRecall.Utilities.CreateDir

WAVEFORM

Contains controls used for saving and recalling waveforms.

<table>
<thead>
<tr>
<th>Delimiter</th>
<th>Enum</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoRecall</td>
<td>Action</td>
</tr>
<tr>
<td>DoSave</td>
<td>Action</td>
</tr>
<tr>
<td>RecallDestination</td>
<td>Enum</td>
</tr>
<tr>
<td>RecallFrom</td>
<td>Enum</td>
</tr>
<tr>
<td>RecallSource</td>
<td>Enum</td>
</tr>
<tr>
<td>SaveDestination</td>
<td>Enum</td>
</tr>
<tr>
<td>SaveSource</td>
<td>Enum</td>
</tr>
<tr>
<td>SaveTo</td>
<td>Enum</td>
</tr>
<tr>
<td>TraceTitle</td>
<td>String</td>
</tr>
<tr>
<td>WaveFormat</td>
<td>Enum</td>
</tr>
<tr>
<td>WaveformDir</td>
<td>FileName</td>
</tr>
</tbody>
</table>

Example

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Save C1 into M1
app.SaveRecall.Waveform.SaveTo = "Memory"
app.SaveRecall.Waveform.SaveSource = "C1"
app.SaveRecall.Waveform.SaveDestination = "M1"
app.SaveRecall.Waveform.DoSave

SaveTo

Description

Sets/Queries type of destination for waveform save.

Example

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the destination to Memory for waveform save.
app.SaveRecall.Waveform.SaveTo = "Memory"

Values

| File | Save into file on a mass-storage device |
Control Reference

WaveFormat

Description
Sets/Queries the format to use when saving waveform data into a file. ‘Binary’ is the most efficient, storing one or two bytes per data sample, depending upon the number of significant bits. When in ASCII mode, the Subformat and Delimiter controls define the data format.

Values

<table>
<thead>
<tr>
<th>WaveFormat</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCII</td>
<td>Plain ASCII files with choice of various delimiters</td>
</tr>
<tr>
<td>Binary</td>
<td>LeCroy's standard binary waveform format</td>
</tr>
<tr>
<td>Excel</td>
<td></td>
</tr>
<tr>
<td>MathCad</td>
<td></td>
</tr>
<tr>
<td>MATLAB</td>
<td></td>
</tr>
</tbody>
</table>
Description
Sets/Queries the source from which waveform data will be saved.

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the destination to memory for waveform save.
app.SaveRecall.Waveform.SaveTo = "Memory"
' Set the source to C2, for saving a waveform.
app.SaveRecall.Waveform.SaveSource = "C2"
' Set the destination to memory M4, for saving a waveform.
app.SaveRecall.Waveform.SaveDestination = "M4"
' Save waveform data as previously specified.
app.SaveRecall.Waveform.DoSave

Values

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AllDisplayed</td>
</tr>
<tr>
<td>C1</td>
</tr>
<tr>
<td>C2</td>
</tr>
<tr>
<td>C3</td>
</tr>
<tr>
<td>C4</td>
</tr>
<tr>
<td>F1</td>
</tr>
<tr>
<td>F2</td>
</tr>
<tr>
<td>F3</td>
</tr>
<tr>
<td>F4</td>
</tr>
<tr>
<td>F5</td>
</tr>
<tr>
<td>F6</td>
</tr>
<tr>
<td>F7</td>
</tr>
<tr>
<td>F8</td>
</tr>
<tr>
<td>M1</td>
</tr>
<tr>
<td>M2</td>
</tr>
<tr>
<td>M3</td>
</tr>
<tr>
<td>M4</td>
</tr>
<tr>
<td>ScanHisto</td>
</tr>
<tr>
<td>ScanOverlay</td>
</tr>
<tr>
<td>TDRN</td>
</tr>
<tr>
<td>Z1</td>
</tr>
<tr>
<td>Z2</td>
</tr>
<tr>
<td>Z3</td>
</tr>
<tr>
<td>Z4</td>
</tr>
</tbody>
</table>
**SaveDestination**

*Enum*

**Description**
Sets/Queries the destination to which waveform data will be saved. Used only when the `SaveTo = "Memory"`.

**Example**
```
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Setup to store trace C2 into M4 and perform the save operation
app.SaveRecall.Waveform.SaveTo = "Memory"
app.SaveRecall.Waveform.SaveSource = "C2"
app.SaveRecall.Waveform.SaveDestination = "M4"
app.SaveRecall.Waveform.DoSave
```

**Values**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td></td>
</tr>
</tbody>
</table>

**Delimiter**

*Enum*

**Description**
Sets/Queries the delimiter to use when saving data in ASCII text mode.

**Values**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Comma</td>
<td></td>
</tr>
<tr>
<td>Semicolon</td>
<td></td>
</tr>
<tr>
<td>Space</td>
<td></td>
</tr>
<tr>
<td>Tab</td>
<td></td>
</tr>
</tbody>
</table>

**WaveformDir**

*FileName*

**Range** Any number of characters

**Description**
Sets/Queries the directory for storing waveform files.

**DoSave**

*Action*

**Description**
Save waveform data into an internal memory, or file on a mass-storage device, using the pre-specified source and destination.
### TraceTitle

- **Type:** String
- **Range:** Any number of characters
- **Description:** Sets/Queries the title (prefix) to use when naming saved traces. This prefix will have the family (sequence) number appended to it when forming the filename.

### RecallFrom

- **Type:** Enum
- **Description:** Sets/Queries the type of source for waveform recall.

#### Values

<table>
<thead>
<tr>
<th>RecallFrom</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>File</td>
<td>Recall from file on a mass-storage device</td>
</tr>
<tr>
<td>Memory</td>
<td>Recall from one of the internal memories (M1..M4)</td>
</tr>
</tbody>
</table>

### RecallSource

- **Type:** Enum
- **Description:** Sets/Queries the source for recalling waveform data. Used only when recalling from an internal memory with RecallSource = "Memory".

#### Values

<table>
<thead>
<tr>
<th>RecallSource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td></td>
</tr>
</tbody>
</table>

### RecallDestination

- **Type:** Enum
- **Description:** Sets/Queries the destination for waveform recall. When the DoRecall action is executed the waveform will be transferred into this destination trace.

#### Values

<table>
<thead>
<tr>
<th>RecallDestination</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td></td>
</tr>
</tbody>
</table>
Recall waveform data into a trace memory. Source may be either an internal memory (M1..M4), or a file on a mass-storage device, depending on the state of the ‘RecallFrom’ control.

**SYSTEMCONTROL**

---

**ModalDialogTimeout**

- **Range**: From 0 to 120 step 1
- **Description**: Set a timeout, in units of seconds, used to auto-dismiss modal dialogs, with their default responses.

**TDR**

---

**Polarity1**

- **Description**: TDR Edge polarity for TDR1 trace
- **Example**: Visual Basic Script
  ```vbscript
 Set app = CreateObject("LeCroy.XStreamDSO")
 app.TDR.Polarity1 = "Neg"
  ```
- **Values**: Neg
  ```plaintext
 Neg
 Pos
  ```
**Chapter Three**

**Control Reference**

**Skew1**

Range: From -5e-011 to 5e-011 step 1e-013

Description
TDR module 1 hardware Skew control

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Change TDR Pod 1 skew to -15pS
app.TDR.Skew1 = -15e-12

**Polarity2**

Description
TDR Edge polarity for TDR2 trace

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Change TDR trace 2 polarity to negative
app.TDR.Polarity2 = "Neg"

Values

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neg</td>
</tr>
<tr>
<td>Pos</td>
</tr>
</tbody>
</table>

**Skew2**

Range: From -5e-011 to 5e-011 step 1e-013

Description
TDR module 2 hardware Skew control

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Change TDR Pod 2 skew to -15pS
app.TDR.Skew2 = -15e-12
Chapter Three

Control Reference

Skew3

Range: From -5e-011 to 5e-011 step 1e-013

Description
TDR module 3 hardware Skew control

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")
'
' Change TDR Pod 3 skew to -15pS
app.TDR.Skew3 = -15e-12

Skew4

Range: From -5e-011 to 5e-011 step 1e-013

Description
TDR module 4 hardware Skew control

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")
'
' Change TDR Pod 4 skew to -15pS
app.TDR.Skew4 = -15e-12

Averages

Range: From 1 to 512 step 1

Description
Number of TDR signal averages in two port calibration mode, ie number of acquisition that are taken on one port 1 before switching to port 2 and back.

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")
'
' change number of acquisitions in two port TDR mode to 10
app.TDR.Averages = 10

TDRN

app.TDR.TDRN

View

Description
Turns the Normalized TDR trace view On or Off. There has to be a valid TDR calibration performed or loaded before this control becomes active
### Example

```vbnet
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Turn TDR Normalized trace off
app.TDR.TDRN.View = "off"
```

### RESULT

```vbnet
app.TDR.TDRN.Out.Result
```

### ZOOM

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>HorPos</td>
<td>Double</td>
</tr>
<tr>
<td>HorZoom</td>
<td>Double</td>
</tr>
<tr>
<td>ResetZoom</td>
<td>Action</td>
</tr>
<tr>
<td>VariableHorZoom</td>
<td>Bool</td>
</tr>
<tr>
<td>VariableVerZoom</td>
<td>Bool</td>
</tr>
<tr>
<td>VerPos</td>
<td>Double</td>
</tr>
<tr>
<td>VerZoom</td>
<td>Double</td>
</tr>
</tbody>
</table>

### ResetZoom

**Description**

Resets TDR Normalized trace view to show the whole trace

**Example**

```vbnet
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Reset TDR normalized trace zoom settings to default
app.TDR.TDRN.Zoom.Reset
```
VariableVerZoom

Description
Turns on/off TDR Normalized trace variable vertical zoom

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Turn off TDR normalized trace variable vertical zoom scale
app.TDR.TDRN.Zoom.VariableVerrZoom = "Off"

VariableHorZoom

Description
Turns on/off TDR Normalized trace variable horizontal zoom

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Turn on TDR normalized trace variable horizontal zoom scale
app.TDR.TDRN.Zoom.VariableHorZoom = "On"

VerZoom

Range From 0.1 to 100 step (8 digits)

Description
TDR Normalized trace vertical zoom

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Assuming the normalized trace shows impedance parameter
' Change TDR normalized trace vertical scale per division to 10 ohms
app.TDR.TDRN.Zoom.VerZoom = 10

VerPos

Range From -1.5 to 1.5 step (8 digits)

Description
TDR Normalized trace vertical position

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Assuming the normalized trace shows S parameters
' Change TDR normalized trace center vertical position to start at -10dB
app.TDR.TDRN.Zoom.VerrPos = -10
Chapter Three

HorZoom

**Range**
From 0.1 to 1e+006 step (8 digits)

**Description**
TDR Normalized trace horizontal zoom (span per division)

**Example**
```
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Assuming the normalized trace shows impedance parameter
' Change TDR normalized trace scale per division to 10nS
app.TDR.TDRN.Zoom.HorZoom = 10e-9
```

HorPos

**Range**
From -0.5 to 0.5 step (8 digits)

**Description**
TDR Normalized trace horizontal position

**Example**
```
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Assuming the normalized trace shows S parameters
' Change TDR normalized trace center position to start at 1GHz
app.TDR.TDRN.Zoom.HorPos = 1e9
```

DATETIMESETUP

This set of variables controls the date and time setup. In addition to manual controls for hh/mm/ss, dd/mm/yy, there is the ability to set the time and date from an Internet clock using the SNTP protocol.

<table>
<thead>
<tr>
<th>CurrentDateTimeAndTime</th>
<th>String</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day</td>
<td>Integer</td>
</tr>
<tr>
<td>Hour</td>
<td>Integer</td>
</tr>
<tr>
<td>Minute</td>
<td>Integer</td>
</tr>
<tr>
<td>Month</td>
<td>Integer</td>
</tr>
<tr>
<td>Second</td>
<td>Integer</td>
</tr>
<tr>
<td>SetFromSNTP</td>
<td>Action</td>
</tr>
<tr>
<td>Validate</td>
<td>Action</td>
</tr>
<tr>
<td>Year</td>
<td>Integer</td>
</tr>
</tbody>
</table>

**Example**
```
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set time/date from the NIST Internet clock
app.Utility.DateTimeSetup.SetFromSNTP
```

Validate

**Description**
Validates any new settings. This action is equivalent to clicking 'Validate Changes' on the Date/Time page.

**Example**

```vbs```
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the day, hour, and minute, and validate.
app.Utility.DateTimeSetup.Day = 3
app.Utility.DateTimeSetup.Hour = 5
app.Utility.DateTimeSetup.Minute = 8

app.Utility.DateTimeSetup.Validate
```

**SetFromSNTP**

*Action*

**Description**
Sets the real time clock from the simple network time protocol.

**Example**

```vbs```
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the real time clock from the simple network time protocol.
app.Utility.DateTimeSetup.SetFromSNTP
```

**CurrentDateAndTime**

*String*

**Range**
Any number of characters

**Description**
Reads the current date and time from the real-time calendar and clock.

**Example**

```vbs```
Set app = CreateObject("LeCroy.XStreamDSO")

' Read the current date and time from the real-time calendar and clock.
app.Utility.DateTimeSetup.CurrentDateAndTime
```
### Chapter Three

**Control Reference**

#### Day

<table>
<thead>
<tr>
<th>Range</th>
<th>From 1 to 31 step 1</th>
</tr>
</thead>
</table>

**Description**

Sets/Queries the day of the month setting of the real-time clock as a number. The value will not be accepted by the clock until `app.Utility.DateTimeSetup.Validate` is sent. All time/date controls are validated at the same time.

**Example**

```
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the day of the month as 21.
app.Utility.DateTimeSetup.Day = 21
app.Utility.DateTimeSetup.Validate
```

#### Month

<table>
<thead>
<tr>
<th>Range</th>
<th>From 1 to 12 step 1</th>
</tr>
</thead>
</table>

**Description**

Sets/Queries the month setting of the real-time clock as a number. The value will not be accepted by the clock until `app.Utility.DateTimeSetup.Validate` is sent. All time/date controls are validated at the same time.

**Example**

```
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the month as August.
app.Utility.DateTimeSetup.Month = 8
app.Utility.DateTimeSetup.Validate
```

#### Year

<table>
<thead>
<tr>
<th>Range</th>
<th>From 2000 to 2037 step 1</th>
</tr>
</thead>
</table>

**Description**

Sets/Queries the year setting of the real-time clock as a number. The value will not be accepted by the clock until `app.Utility.DateTimeSetup.Validate` is sent. All time/date controls are validated at the same time.

**Example**

```
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the year as 2003.
app.Utility.DateTimeSetup.Year = 2003
app.Utility.DateTimeSetup.Validate
```
Chapter Three

Control Reference

Hour

<table>
<thead>
<tr>
<th>Range</th>
<th>From 0 to 23 step 1</th>
</tr>
</thead>
</table>

Description
Sets/Queries the hours setting of the real-time clock as a number.
The value will not be accepted by the clock until app.Utility.DateTimeSetup.Validate is sent. All time/date controls are validated at the same time.

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the hour as 13.
app.Utility.DateTimeSetup.Hour = 13
app.Utility.DateTimeSetup.Validate

Minute

<table>
<thead>
<tr>
<th>Range</th>
<th>From 0 to 59 step 1</th>
</tr>
</thead>
</table>

Description
Sets/Queries the minutes setting of the real-time clock as a number.
The value will not be accepted by the clock until app.Utility.DateTimeSetup.Validate is sent. All time/date controls are validated at the same time.

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the minute as 34.
app.Utility.DateTimeSetup.Minute = 34
app.Utility.DateTimeSetup.Validate

Second

<table>
<thead>
<tr>
<th>Range</th>
<th>From 0 to 59 step 1</th>
</tr>
</thead>
</table>

Description
Sets/Queries the seconds setting of the real-time clock as a number.
The value will not be accepted by the clock until app.Utility.DateTimeSetup.Validate is sent. All time/date controls are validated at the same time.

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the seconds as 55.
app.Utility.DateTimeSetup.Second = 55
app.Utility.DateTimeSetup.Validate

OPTIONS

app.Utility.Options

Options subsystem, contains controls to query the list of installed software and hardware options.

<table>
<thead>
<tr>
<th>InstalledHWOptions</th>
<th>String</th>
</tr>
</thead>
</table>
### InstalledHWOptions

**Range**
Any number of characters

**Description**
Shows a list of the installed hardware options.

**Example**
```
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Read the list of installed hardware options and present
' in a popup dialog
MsgBox app.Utility.Options.InstalledHWOPtions
```

### InstalledSWOptions

**Range**
Any number of characters

**Description**
Shows list of installed software options.

**Example**
```
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Read the list of installed software options and display
' in a popup dialog
MsgBox app.Utility.Options.InstalledSWOPtions
```

### ScopeID

**Range**
Any number of characters

**Description**
Queries the ID of the instrument. This ID should be specified when purchasing software options for your instrument.

**Example**
```
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Read the ID of the instrument.
MsgBox app.Utility.Options.ScopeID
```

---

### REMOTE

**app.Utility.Remote**

Controls related to the remote control section of the instrument. Note that in this context Automation is not considered part of 'Remote'. Remote control currently includes control using ASCII remote commands from GPIB or TCP/IP.
### Chapter Three

#### Control Reference

<table>
<thead>
<tr>
<th>Interface</th>
<th>Enum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RestrictControl</th>
<th>Enum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SetToErrorsOnlyAndClearAtStartup</th>
<th>Bool</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### Interface

**Description**

Sets/Queries the currently selected type of currently selected remote control interface.

**Values**

<table>
<thead>
<tr>
<th>Off</th>
<th>TCP/IP</th>
</tr>
</thead>
</table>

#### Assistant

**Description**

Sets/Queries the setting of the remote assistant.

**Values**

<table>
<thead>
<tr>
<th>EO</th>
<th>Log errors only</th>
</tr>
</thead>
<tbody>
<tr>
<td>FD</td>
<td>Log all remote commands/queries</td>
</tr>
<tr>
<td>OFF</td>
<td>Turn the assistant off</td>
</tr>
</tbody>
</table>

#### RestrictControl

**Description**

Sets/Queries whether remote control is restricted to certain hosts, where the host name is defined either by IP address, or dns name.

**Values**

<table>
<thead>
<tr>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
</table>

#### SetToErrorsOnlyAndClearAtStartup

**Description**

Enable the resetting of the remote assistant to 'Errors Only' mode when the instrument is reset. Also ensure that the remote assistant log is cleared upon startup. This control is set by default to lower the risk that the remote assistant will be set to 'Full Dialog' mode and be forgotten, causing a decrease in remote control performance.

---

**WAVESCAN**

This is the root of the WaveScan automation hierarchy.
WaveScan enables you to search for unusual events in a single capture, or to scan for an event in many acquisitions over a long period of time.

It may be considered a kind of software trigger.

<table>
<thead>
<tr>
<th>Enable</th>
<th>Bool</th>
</tr>
</thead>
<tbody>
<tr>
<td>FindUseMean</td>
<td>Action</td>
</tr>
<tr>
<td>FindRare1Sigma</td>
<td>Action</td>
</tr>
<tr>
<td>FindRare3Sigma</td>
<td>Action</td>
</tr>
<tr>
<td>FindRare5Sigma</td>
<td>Action</td>
</tr>
<tr>
<td>FindSelectRarest</td>
<td>Action</td>
</tr>
<tr>
<td>FindUseMean</td>
<td>Action</td>
</tr>
</tbody>
</table>

**Enable**

**Description**
Sets/Queries the WaveScan enabled state.

**FindUseMean**

**Description**
Setup the filter to find measurements with values > the current statistical mean.

**FindRare1Sigma**

**Description**
Preset the filter limit and delta to find rare events. Uses the history of measurements since the last Clear Sweeps, or control change, to set the limit and delta to capture +/- 1 sigma events.

**FindRare3Sigma**

**Description**
Preset the filter limit and delta to find rare events. Uses the history of measurements since the last Clear Sweeps, or control change, to set the limit and delta to capture +/- 3 sigma events.
**FindRare5Sigma**

**Description**

Preset the filter limit and delta to find rare events. Uses the history of measurements since the last Clear Sweeps, or control change, to set the limit and delta to capture +/- 5 sigma events.

**FindSelectRarest**

**Description**

Setup the filter to find the rarest events (measurements) in each acquisition. Using the RarestMode control, the smallest, largest, or both may be selected. Using the NumRareEvents control, the number of events to be found may be specified. Note that in 'Both' mode 1/2 of the selected number of events are taken from the Smallest, and Largest values.

**Example**

```
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' configure WaveScan to measure the 5 smallest, and 5 largest, rise time measurements
app.WaveScan.Enable = True
app.WaveScan.Mode = "Measurement"
app.WaveScan.Measurement = "rise"
app.WaveScan.FindSelectRarest
app.WaveScan.RarestMode = "Both"
app.WaveScan.NumRareEvents = 10
```

**SCANDECODE**

```
app.WaveScan.ScanDecode
```

**View**

**Description**

Sets/Queries the trace's 'Viewed' state. When true, the trace is displayed on one of the display graticules. Note that even when a trace is not visible, it may be used as a source for Math, Measure, etc.
ClearSweeps

**Description**
Clear any accumulated result data. Useful for example to restart an average, or parameter statistics.

**Grid**

**Range** Any number of characters

**Description**
Sets/Queries the graticule on which the trace is displayed. Typical values include:
- YT1..YT8: one of the YT graticules used in Single, Dual, Quad, and Octal display modes.
- NotOnGrid: not displayed on any graticule.

**RESULT**

`app.WaveScan.ScanDecode.Out.Result`

**SCANHISTO**

`app.WaveScan.ScanHisto`

<table>
<thead>
<tr>
<th>ClearSweeps</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>LabelsPosition</td>
<td>String</td>
</tr>
<tr>
<td>LabelsText</td>
<td>String</td>
</tr>
<tr>
<td>Persisted</td>
<td>Bool</td>
</tr>
<tr>
<td>PersistenceSaturation</td>
<td>Integer</td>
</tr>
<tr>
<td>PersistenceTime</td>
<td>Enum</td>
</tr>
<tr>
<td>PersistenceViewOn</td>
<td>Bool</td>
</tr>
<tr>
<td>ShowLastTrace</td>
<td>Bool</td>
</tr>
<tr>
<td>View</td>
<td>Bool</td>
</tr>
<tr>
<td>ViewLabels</td>
<td>Bool</td>
</tr>
</tbody>
</table>

**View**

**Description**
Sets/Queries the trace's 'Viewed' state. When true, the trace is displayed on one of the display graticules. Note that even when a trace is not visible, it may be used as a source for Math, Measure, etc.
ClearSweeps

**Description**
Clear any accumulated result data. Useful for example to restart an average, or parameter statistics.

**Persisted**

**Description**
Sets/Queries the persisted state of the waveform. If the Display.LockPersistence control is set to 'AllLocked' then the persisted state of all displayed waveforms will be the same. If the Display.LockPersistence control is set to 'PerTrace' then the persisted state of each waveform may be independently controlled.

**PersistenceSaturation**

**Range** From 0 to 100 step 1

**Description**
Sets/Queries the saturation threshold for persisted waveforms.
All information at this level or above will be recorded with the same color or intensity.
See the general description above for a discussion of the locked and unlocked persistence modes.

**ShowLastTrace**

**Description**
Sets/Queries the state of the Show Last Trace control. If True then when this trace is displayed in persistence mode the last acquired waveform will be superimposed on the accumulating persistence map.
See the general description above for a discussion of the locked and unlocked persistence modes.
PersistenceTime

**Description**
Sets/Queries the state of the Persistence Time control. Controls the persistence decay time for this trace. See the general description above for a discussion of the locked and unlocked persistence modes.

**Values**

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5s</td>
</tr>
<tr>
<td>10s</td>
</tr>
<tr>
<td>1s</td>
</tr>
<tr>
<td>20s</td>
</tr>
<tr>
<td>2s</td>
</tr>
<tr>
<td>5s</td>
</tr>
<tr>
<td>Infinite</td>
</tr>
</tbody>
</table>

PersistenceViewOn

**Description**
Query the state of the persistence view.

LabelsText

**Range**
Any number of characters

LabelsPosition

**Range**
Any number of characters

**Description**
Sets / Queries the horizontal position of the label attached to the acquisition trace Cx. The unit of measurement is the unit of the horizontal scale. The measurement is made from the trigger point. Note that this control is a string, not a numeric value. This allows multiple labels to be positioned, as shown in the example below.

ViewLabels

**Description**
Sets/Queries whether the user-defined labels for the trace are visible.
See Also: LabelsPosition and LabelsText controls.
### HISTOGRAM

<table>
<thead>
<tr>
<th>Control</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoFindScale</td>
<td>Bool</td>
</tr>
<tr>
<td>Bins</td>
<td>DoubleLockstep</td>
</tr>
<tr>
<td>BufferSize</td>
<td>Integer</td>
</tr>
<tr>
<td>Center</td>
<td>Double</td>
</tr>
<tr>
<td>ClearSweeps</td>
<td>Action</td>
</tr>
<tr>
<td>FindScale</td>
<td>Action</td>
</tr>
<tr>
<td>HorScale</td>
<td>DoubleLockstep</td>
</tr>
<tr>
<td>Values</td>
<td>Integer</td>
</tr>
<tr>
<td>VerScaleType</td>
<td>Enum</td>
</tr>
</tbody>
</table>

**ClearSweeps**  

**Action**

**Description**

Clear any accumulated result data. Useful for example to restart an average, or parameter statistics.

**Values**  

**Integer**

**Range**  

From 20 to 1000 step 1

**Description**

Size of the buffer in which all values currently histogrammed are queued.

**BufferSize**  

**Integer**

**Range**  

From 200 to 1000 step 1

**Description**

Size of the buffer which stores incoming parameter values, ready to be histogrammed. Not to be confused with the 'Values' control, which defines the number of values from the buffer which are currently rendered in the histogram.

**Bins**  

**DoubleLockstep**

**Range**  

From 20 to 2000 step 1, locked to 1 2 5, fine grain allowed=false, on=false

**Description**

Number of bins in the histogram.
Chapter Three

Control Reference

HorScale

<table>
<thead>
<tr>
<th>Range</th>
<th>From 1e-012 to 1e+012 step 0.01, locked to 2 5, fine grain allowed=false, on=false</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Horizontal scale of the histogram, per division of the graticule.</td>
</tr>
</tbody>
</table>

Center

<table>
<thead>
<tr>
<th>Range</th>
<th>From -1e+010 to 1e+010 step 1e-012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Defines the value of the bin which is centered horizontally within the graticule.</td>
</tr>
</tbody>
</table>

FindScale

| Description | Automatically determine an appropriate horizontal scale for the histogram, using the values currently in the histogram buffer. |

VerScaleType

| Description | Vertical Scale mode of the histogram, Linear, or 'Linear with Constant Maximum'. |
| Values | LinConstMax | Linear |

AutoFindScale

| Description | Defines whether the histogram horizontal axis is automatically scaled when sufficient data has been accumulated. The FindScale control may be used to manually find the scale, if this control is set to False. |

RESULT

app.WaveScan.ScanHisto.Out.Result
Chapter Three

Control Reference

ZOOM

app.WaveScan.ScanHisto.Zoom

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HorPos</td>
<td>Double</td>
<td></td>
</tr>
<tr>
<td>HorZoom</td>
<td>Double</td>
<td></td>
</tr>
<tr>
<td>ResetZoom</td>
<td>Action</td>
<td></td>
</tr>
<tr>
<td>VariableHorZoom</td>
<td>Bool</td>
<td>Enable/Disable the variable Horizontal Zoom control. If enabled, the HorZoom control may be set to a value other than the standard 1, 2, 5 sequence.</td>
</tr>
<tr>
<td>VariableVerZoom</td>
<td>Bool</td>
<td>Enable/Disable the variable Vertical Zoom control. If enabled, the VerZoom control may be set to a value other than the standard 1, 2, 5 sequence.</td>
</tr>
<tr>
<td>VerPos</td>
<td>Double</td>
<td></td>
</tr>
<tr>
<td>VerZoom</td>
<td>Double</td>
<td></td>
</tr>
</tbody>
</table>

ResetZoom

**Action**

**Description**

Resets the zoom settings to their default values.

VariableVerZoom

**Bool**

**Description**

Enable/Disable the variable Vertical Zoom control. If enabled, the VerZoom control may be set to a value other than the standard 1, 2, 5 sequence.

VariableHorZoom

**Bool**

**Description**

Enable/Disable the variable Horizontal Zoom control. If enabled, the HorZoom control may be set to a value other than the standard 1, 2, 5 sequence.

VerZoom

**Double**

**Range** From 0.1 to 100 step (8 digits)

**Description** Vertical Zoom setting. Locked to a 1, 2, 5 sequence unless VariableVerZoom is set to True.
Chapter Three

Control Reference

**VerPos**

<table>
<thead>
<tr>
<th>Range</th>
<th>From -1.5 to 1.5 step (8 digits)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Description</strong></td>
<td>Vertical Position of the trace, normalized to a value between -1.5 and 1.5. A value of zero is the default, and indicates no position change relative to the source trace.</td>
</tr>
</tbody>
</table>

**HorZoom**

<table>
<thead>
<tr>
<th>Range</th>
<th>From 0.1 to 1e+006 step (8 digits)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Description</strong></td>
<td>Horizontal Zoom setting. Locked to a 1, 2, 5 sequence unless VariableHorZoom is set to True.</td>
</tr>
</tbody>
</table>

**HorPos**

<table>
<thead>
<tr>
<th>Range</th>
<th>From -0.5 to 0.5 step (8 digits)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Description</strong></td>
<td>Horizontal Position of the trace, normalized to a value between -0.5 and 0.5. A value of zero is the default, and indicates no position change relative to the source trace.</td>
</tr>
</tbody>
</table>

---

**SCANOVERLAY**

<table>
<thead>
<tr>
<th>ClearSweeps</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>EnablePersistence</td>
<td>Bool</td>
</tr>
<tr>
<td>Persisted</td>
<td>Bool</td>
</tr>
<tr>
<td>PersistenceSaturation</td>
<td>Integer</td>
</tr>
<tr>
<td>PersistenceTime</td>
<td>Enum</td>
</tr>
<tr>
<td>ShowLastTrace</td>
<td>Bool</td>
</tr>
<tr>
<td>View</td>
<td>Bool</td>
</tr>
</tbody>
</table>

**View**

| **Description** | Sets/Queries the trace's 'Viewed' state. When true, the trace is displayed on one of the display graticules. Note that even when a trace is not visible, it may be used as a source for Math, Measure, etc. |

**app.WaveScan.ScanOverlay**
ClearSweeps

Description
Clear any accumulated result data. Useful for example to restart an average, or parameter statistics.

Persisted

Description
Sets/Queries the persisted state of the waveform. If the Display.LockPersistence control is set to 'AllLocked' then the persisted state of all displayed waveforms will be the same. If the Display.LockPersistence control is set to 'PerTrace' then the persisted state of each waveform may be independently controlled.

PersistenceSaturation

Range
From 0 to 100 step 1

Description
Sets/Queries the saturation threshold for persisted waveforms. All information at this level or above will be recorded with the same color or intensity. See the general description above for a discussion of the locked and unlocked persistence modes.

ShowLastTrace

Description
Sets/Queries the state of the Show Last Trace control. If True then when this trace is displayed in persistence mode the last acquired waveform will be superimposed on the accumulating persistence map. See the general description above for a discussion of the locked and unlocked persistence modes.
PersistenceTime

Description
Sets/Queries the state of the Persistence Time control. Controls the persistence decay time for this trace. See the general description above for a discussion of the locked and unlocked persistence modes.

Values

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5s</td>
</tr>
<tr>
<td>10s</td>
</tr>
<tr>
<td>1s</td>
</tr>
<tr>
<td>20s</td>
</tr>
<tr>
<td>2s</td>
</tr>
<tr>
<td>5s</td>
</tr>
<tr>
<td>Infinite</td>
</tr>
</tbody>
</table>

EnablePersistence

Description
Set to place the WaveScan 'ScanOverlay' in persistence mode, as opposed to 'overlay' mode (where all contributing sub-waveforms are overlaid)

RESULT

app.WaveScan.ScanOverlay.Out.Result

ZOOM

app.Zoom

<table>
<thead>
<tr>
<th>Method</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>GoToEnd</td>
<td>Action</td>
</tr>
<tr>
<td>GoToStart</td>
<td>Action</td>
</tr>
<tr>
<td>HorZoomIn</td>
<td>Action</td>
</tr>
<tr>
<td>HorZoomOut</td>
<td>Action</td>
</tr>
<tr>
<td>MultiZoomOn</td>
<td>Bool</td>
</tr>
<tr>
<td>QuickZoom</td>
<td>Action</td>
</tr>
<tr>
<td>ResetAll</td>
<td>Action</td>
</tr>
<tr>
<td>ResetZoom</td>
<td>Action</td>
</tr>
<tr>
<td>VariableHorZoom</td>
<td>Bool</td>
</tr>
</tbody>
</table>

ResetAll

Description
Chapter Three

Control Reference

Reset all Zx to their default settings.

QuickZoom

**Description**
Zoom all Cx that are on at an horizontal factor of 10.

MultiZoomOn

**Description**
Turn MultiZoom On and includes all the Zx automatically if any viewed.

ResetZoom

**Description**
Resets the zoom settings to their default values.

VariableHorZoom

**Description**
Enable/Disable the variable Horizontal Zoom control. If enabled, the HorZoom control may be set to a value other than the standard 1, 2, 5 sequence.

GoToStart

**Description**
When in multi-zoom mode, scroll to the start of the source waveform, who's first point will be centered on the graticule.
GoToEnd

**Description**
When in multi-zoom mode, scroll to the end of the source waveform, who's last point will be centered on the graticule.

**HorZoomIn**

**Action**

**Description**
Horizontally zoom in all the traces included in MultiZoom.

**HorZoomOut**

**Action**

**Description**
Horizontally zoom out all the traces included in MultiZoom.

ZX

**app.Zoom.Zx**

<table>
<thead>
<tr>
<th>ClearSweeps</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoStoreToMemoryTrace</td>
<td>Action</td>
</tr>
<tr>
<td>Equation</td>
<td>String</td>
</tr>
<tr>
<td>LabelsPosition</td>
<td>String</td>
</tr>
<tr>
<td>LabelsText</td>
<td>String</td>
</tr>
<tr>
<td>Persisted</td>
<td>Bool</td>
</tr>
<tr>
<td>PersistenceSaturation</td>
<td>Integer</td>
</tr>
<tr>
<td>PersistenceTime</td>
<td>Enum</td>
</tr>
<tr>
<td>PersistenceViewOn</td>
<td>Bool</td>
</tr>
<tr>
<td>ShowLastTrace</td>
<td>Bool</td>
</tr>
<tr>
<td>Source</td>
<td>Enum</td>
</tr>
<tr>
<td>UseGrid</td>
<td>String</td>
</tr>
<tr>
<td>View</td>
<td>Bool</td>
</tr>
<tr>
<td>ViewLabels</td>
<td>Bool</td>
</tr>
</tbody>
</table>

**View**

**Bool**

**Description**
Sets/Queries the trace's 'Viewed' state. When true, the trace is displayed on one of the display graticules. Note that even when a trace is not visible, it may be used as a source for Math, Measure, etc.
ClearSweeps

**Description**
Clear any accumulated result data. Useful for example to restart an average, or parameter statistics.

UseGrid

**String**
**Range** Any number of characters

**Description**
Sets/Queries the grid in use for the zoom trace Zx.
See also app.Acquisition.Cx.UseGrid.

Persisted

**Bool**

**Description**
Sets/Queries the persisted state of the waveform. If the Display.LockPersistence control is set to 'AllLocked' then the persisted state of all displayed waveforms will be the same. If the Display.LockPersistence control is set to 'PerTrace' then the persisted state of each waveform may be independently controlled.

PersistenceSaturation

**Integer**

**Range** From 0 to 100 step 1

**Description**
Sets/Queries the saturation threshold for persisted waveforms.
All information at this level or above will be recorded with the same color or intensity.
See the general description above for a discussion of the locked and unlocked persistence modes.

ShowLastTrace

**Bool**

**Description**
Sets/Queries the state of the Show Last Trace control. If True then when this trace is displayed in persistence mode the last acquired waveform will be superimposed on the accumulating persistence map.
See the general description above for a discussion of the locked and unlocked persistence modes.
PersistenceTime

**Description**

Sets/Queries the state of the Persistence Time control. Controls the persistence decay time for this trace. See the general description above for a discussion of the locked and unlocked persistence modes.

**Values**

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5s</td>
</tr>
<tr>
<td>10s</td>
</tr>
<tr>
<td>1s</td>
</tr>
<tr>
<td>20s</td>
</tr>
<tr>
<td>2s</td>
</tr>
<tr>
<td>5s</td>
</tr>
<tr>
<td>Infinite</td>
</tr>
</tbody>
</table>

PersistenceViewOn

**Description**

Query the state of the persistence view.

LabelsText

**Range** Any number of characters

LabelsPosition

**Range** Any number of characters

**Description**

Sets / Queries the horizontal position of the label attached to the acquisition trace Cx. The unit of measurement is the unit of the horizontal scale. The measurement is made from the trigger point. Note that this control is a string, not a numeric value. This allows multiple labels to be positioned, as shown in the example below.

ViewLabels

**Description**

Sets/Queries whether the user-defined labels for the trace are visible. See Also: LabelsPosition and LabelsText controls.
**Source**

**Description**

Zoom source trace.

**Values**

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
</tr>
<tr>
<td>C2</td>
</tr>
<tr>
<td>C3</td>
</tr>
<tr>
<td>C4</td>
</tr>
<tr>
<td>F1</td>
</tr>
<tr>
<td>F2</td>
</tr>
<tr>
<td>F3</td>
</tr>
<tr>
<td>F4</td>
</tr>
<tr>
<td>F5</td>
</tr>
<tr>
<td>F6</td>
</tr>
<tr>
<td>F7</td>
</tr>
<tr>
<td>F8</td>
</tr>
<tr>
<td>M1</td>
</tr>
<tr>
<td>M2</td>
</tr>
<tr>
<td>M3</td>
</tr>
<tr>
<td>M4</td>
</tr>
<tr>
<td>ScanHisto</td>
</tr>
<tr>
<td>ScanOverlay</td>
</tr>
<tr>
<td>TDRN</td>
</tr>
<tr>
<td>Z2</td>
</tr>
<tr>
<td>Z3</td>
</tr>
<tr>
<td>Z4</td>
</tr>
</tbody>
</table>

**DoStoreToMemoryTrace**

**Description**

Store the content of Zx into the corresponding Memory Slot (Mx).

**Equation**

**Range** Any number of characters

**Description** Same as app.Math.Fx.Equation.

**RESULT**

### ZOOM

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>HorPos</td>
<td>Double</td>
</tr>
<tr>
<td>HorZoom</td>
<td>Double</td>
</tr>
<tr>
<td>ResetZoom</td>
<td>Action</td>
</tr>
<tr>
<td>VariableHorZoom</td>
<td>Bool</td>
</tr>
<tr>
<td>VariableVerZoom</td>
<td>Bool</td>
</tr>
<tr>
<td>VerPos</td>
<td>Double</td>
</tr>
<tr>
<td>VerZoom</td>
<td>Double</td>
</tr>
</tbody>
</table>

#### ResetZoom

**Action**

**Description**

Resets the zoom settings to their default values.

#### VariableVerZoom

**Bool**

**Description**

Enable/Disable the variable Vertical Zoom control. If enabled, the VerZoom control may be set to a value other than the standard 1, 2, 5 sequence.

#### VariableHorZoom

**Bool**

**Description**

Enable/Disable the variable Horizontal Zoom control. If enabled, the HorZoom control may be set to a value other than the standard 1, 2, 5 sequence.

#### VerZoom

**Double**

**Range**

From 0.1 to 100 step (8 digits)

**Description**

Vertical Zoom setting. Locked to a 1, 2, 5 sequence unless VariableVerZoom is set to True.
Control Reference

**VerPos**

- **Range**: From -1.5 to 1.5 step (8 digits)
- **Description**: Vertical Position of the trace, normalized to a value between -1.5 and 1.5. A value of zero is the default, and indicates no position change relative to the source trace.

**HorZoom**

- **Range**: From 0.1 to 1e+006 step (8 digits)
- **Description**: Horizontal Zoom setting. Locked to a 1, 2, 5 sequence unless VariableHorZoom is set to True.

**HorPos**

- **Range**: From -0.5 to 0.5 step (8 digits)
- **Description**: Horizontal Position of the trace, normalized to a value between -0.5 and 0.5. A value of zero is the default, and indicates no position change relative to the source trace.
**Waveform Averaging.**

<table>
<thead>
<tr>
<th>AverageType</th>
<th>Enum</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClearSweeps</td>
<td>Action</td>
</tr>
<tr>
<td>Sweeps</td>
<td>Integer</td>
</tr>
</tbody>
</table>

**Example**

`' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")
' Turn trace F1 on and setup to average the data from C1
' Average mode is set to Continuous
app.Math.F1.View = True
app.Math.F1.Operator1 = "Average"
app.Math.F1.MathMode = "OneOpe"

**AverageType**

**Description**

Sets / Queries the averaging mode. Continuous and Summation modes are supported.

**Values**

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous</td>
</tr>
<tr>
<td>Summed</td>
</tr>
</tbody>
</table>

**Sweeps**

**Range**

From 1 to 100000 step 1

**Description**

Sets / Queries the number of sweeps to be averaged when trace Fx is set to averaging - continuous or summed.

**Example**

`' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set number of sweeps to be averaged in trace F1 as 20.
ClearSweeps

**Description**
Clears all averaged sweeps.

**Example**

```vbnet
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Clear sweeps for average in trace F1.
```

**DERIVATIVE**

`app.Math.Fx.OperatorYSetup (Operator = "Derivative")`

Computes the derivative of the waveform \((next\_sample\_value - this\_sample\_value) / \text{horizontal\_sample\_interval}\).

<table>
<thead>
<tr>
<th><strong>EnableAutoScale</strong></th>
<th><strong>Bool</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>FindScale</strong></td>
<td><strong>Action</strong></td>
</tr>
<tr>
<td><strong>VerOffset</strong></td>
<td><strong>Double</strong></td>
</tr>
<tr>
<td><strong>VerScale</strong></td>
<td><strong>DoubleLockstep</strong></td>
</tr>
</tbody>
</table>

**Example**

```vbnet
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Start a find scale operation for derivative function trace F1
app.Math.F1.View = True
app.Math.F1.MathMode = "OneOperator"
app.Math.F1.Operator1 = "Derivative"
app.Math.F1.Operator2 = "Derivative"
```

**VerScale**

**DoubleLockstep**

**Range**
From 1e-012 to 1e+013 step 10000, locked to 1 2 5, fine grain allowed=false, on=false

**Description**
Sets/Queries the vertical scale of the derivative function Fx.

**VerOffset**

**Double**

**Range**
From -1e+006 to 1e+006 step 1e-009

**Description**
Sets/Queries the vertical offset of the derivative function trace Fx.
Chapter Four

FindScale

**Action**

**Description**
Initiates a Find Scale action, to set a suitable vertical scale for the derivative function trace Fx.

EnableAutoScale

**Bool**

**Description**
Sets/Queries whether the autoscale function is enabled for the derivative function trace Fx. If enabled, an auto-scale operation is performed whenever the setup changes.

**Example**

```vbs
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the displacement of the trace F3 to 3.7e-9
app.Math.F3.Operator1 = "Deskew"
```

WaveDeskew

**Double**

**Range**
From -2.5e-008 to 2.5e-008 step 1e-012

**Description**
Sets/Queries the displacement in time of the trace Fx. A positive value delays the signal: a negative one makes it appear earlier.

**Example**

```vbs
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the displacement of the trace F3 to 3.7e-9
app.Math.F3.Operator1 = "Deskew"
```

EnHANCEDRESOLUTION

**Enum**

**Bits**

**Example**

```vbs
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set the displacement of the trace F3 to 3.7e-9
app.Math.F3.Operator1 = "Deskew"
```
**Chapter Four**

**Control Reference**

**Description**

Number of bits of enhanced resolution. ERES is a FIR filter with a gaussian frequency response.

<table>
<thead>
<tr>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>Enhance by 0.5 bits</td>
</tr>
<tr>
<td>1</td>
<td>Enhance by 1 bits</td>
</tr>
<tr>
<td>1.5</td>
<td>Enhance by 1.5 bits</td>
</tr>
<tr>
<td>2</td>
<td>Enhance by 2 bits</td>
</tr>
<tr>
<td>2.5</td>
<td>Enhance by 2.5 bits</td>
</tr>
<tr>
<td>3</td>
<td>Enhance by 3 bits</td>
</tr>
</tbody>
</table>

**ENVELOPE**

app.Math.Fx.OperatorYSetup (Operator = "Envelope")

Envelope of minimum and maximum values for an ensemble of sweeps, or 'Extrema'

<table>
<thead>
<tr>
<th>ClearSweeps</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweeps</td>
<td>Integer</td>
</tr>
</tbody>
</table>

**Example**

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Configure F3 to be an envelope of C1
app.Math.F3.Source1 = "C1"
app.Math.F3.Operator1 = "Envelope"

**Sweeps**

*Range* From 1 to 1000000 step 1

**Description**

Sets/Queries the maximum number of sweeps to be used by the envelope function trace Fx.

**ClearSweeps**

*Action*

*Description*

Initiates a Clear Sweeps operation for envelope function trace Fx.

**FFT**

app.Math.Fx.OperatorYSetup (Operator = "FFT")

Fast Fourier Transform of waveform data.
Example

Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Configure F3 to perform an FFT of C1
app.Math.F3.Source1 = "C1"
app.Math.F3.Operator1 = "FFT"
app.Math.F3.Operator1Se

Type

Description
Sets/Queries the type of FFT spectrum for function trace Fx.

<table>
<thead>
<tr>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnitude</td>
<td>Magnitude with linear vertical scale</td>
</tr>
<tr>
<td>Phase</td>
<td>Phase</td>
</tr>
<tr>
<td>PowerSpectrum</td>
<td>Power Spectrum</td>
</tr>
</tbody>
</table>

Window

Description
Sets/Queries the type of window for the FFT function trace Fx.

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>BlackmanHarris</td>
</tr>
<tr>
<td>FlatTop</td>
</tr>
<tr>
<td>Hamming</td>
</tr>
<tr>
<td>Rectangular</td>
</tr>
<tr>
<td>VonHann</td>
</tr>
</tbody>
</table>
Chapter Four

Control Reference

Algorithm

Description
Sets/Queries the algorithm for the FFT in function trace Fx.

Example

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set function trace F4 to FFT.
app.Math.F4.Operator1 = "FFT"
' Set the FFT algorithm to power of two.

Values

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>LeastPrime</td>
</tr>
<tr>
<td>Power2</td>
</tr>
</tbody>
</table>

fillType

Description
Sets/Queries the type of trace fill to use in the FFT function trace Fx.

Values

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truncate</td>
</tr>
<tr>
<td>ZeroFill</td>
</tr>
</tbody>
</table>

SuppressDC

Description
Enables/Disables suppression of the value at zero frequency in the FFT spectrum.

FLOOR

app.Math.Fx.OperatorYSetup (Operator = "Floor")

Most negative or minimum values for an ensemble of sweeps, or "Floor"

<table>
<thead>
<tr>
<th>ClearSweeps</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweeps</td>
<td>Integer</td>
</tr>
</tbody>
</table>

Example

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Configure F1 to measure the Floor of the first 1000 sweeps of C1
app.Math.F1.View = True
app.Math.F1.Source1 = "C1"
app.Math.F1.MathMode = "OneOperator"
app.Math.F1.Operator1

ClearSweeps

Action
Chapter Four

Control Reference

Description
Initiates a clear sweeps action for the Floor function trace Fx.

Sweeps

Range
From 1 to 100000 step 1

Description
Sets/Queries the maximum number of sweeps for the Floor function trace Fx.

HISTOGRAM

app.Math.Fx.OperatorYSetup (Operator = "Histogram")

Histogram of the values of a parameter, or if a waveform is used as the input, histogram the waveform sample amplitudes.

<table>
<thead>
<tr>
<th>AutoFindScale</th>
<th>Bool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bins</td>
<td>DoubleLockstep</td>
</tr>
<tr>
<td>Center</td>
<td>Double</td>
</tr>
<tr>
<td>ClearSweeps</td>
<td>Action</td>
</tr>
<tr>
<td>FindScale</td>
<td>Action</td>
</tr>
<tr>
<td>HorScale</td>
<td>DoubleLockstep</td>
</tr>
<tr>
<td>Values</td>
<td>Integer</td>
</tr>
<tr>
<td>VerScaleType</td>
<td>Enum</td>
</tr>
</tbody>
</table>

Example

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Configure F1 to histogram the first 200000 sample values from source waveform C1 into 50 bins.
' Auto find-scale is enabled.
app.Math.F1.View = True
app.Math.F1.Source1 = "C1"

ClearSweeps

Description
Clears the contents of all the bins of the histogram function Fx.
### Values

<table>
<thead>
<tr>
<th>Range</th>
<th>From 20 to 1000 step 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Sets/Queries the maximum number of values from the source result to include in the histogram function Fx.</td>
</tr>
</tbody>
</table>

### Bins

<table>
<thead>
<tr>
<th>Range</th>
<th>From 20 to 2000 step 1, locked to 1 2 5, fine grain allowed=false, on=false</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Sets/Queries the number of bins in the histogram function Fx.</td>
</tr>
</tbody>
</table>

### HorScale

<table>
<thead>
<tr>
<th>Range</th>
<th>From 1e-012 to 1e+012 step 0.01, locked to 1 2 5, fine grain allowed=false, on=false</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Sets/Queries the horizontal scale in units per division for the histogram function Fx. Use the FindScale control to automatically determine the scale by looking at the non-zero populated bins.</td>
</tr>
</tbody>
</table>

### Center

<table>
<thead>
<tr>
<th>Range</th>
<th>From -1e+010 to 1e+010 step 1e-012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Sets/Queries the horizontal value at the center of the graticule of the histogram function Fx.</td>
</tr>
</tbody>
</table>

### FindScale

| Description    | Creates a suitable horizontal position and scale to include all the non-empty bins of the histogram Fx. |
**VerScaleType**

**Enum**

**Description**
Sets/Queries the way that the vertical scale is calculated as the histogram Fx grows.

**Example**
Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set function F1 as histogram.
app.Math.F1.Operator1 = "Histogram"

' Set the vertical scale type to linear with constant maximum.
app.Math.F1.Operator1Setup.VerScaleType = "LinConstMax"

**Values**

<table>
<thead>
<tr>
<th>LinConstMax</th>
<th>Linear scale with constant maximum value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>Linear scale</td>
</tr>
</tbody>
</table>

**AutoFindScale**

**Bool**

**Description**
Enables/Disables automatic scale setting for the histogram function Fx.

**InTEGRAL**

*app.Math.Fx.OperatorYSetup (Operator = "Integral")*

Integral of the linearly rescaled (multiplier and adder) input.

<table>
<thead>
<tr>
<th>Adder</th>
<th>Double</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoFindScale</td>
<td>Bool</td>
</tr>
<tr>
<td>FindScale</td>
<td>Action</td>
</tr>
<tr>
<td>Multiplier</td>
<td>Double</td>
</tr>
<tr>
<td>VerOffset</td>
<td>Double</td>
</tr>
<tr>
<td>VerScale</td>
<td>DoubleLockstep</td>
</tr>
</tbody>
</table>

**Example**
Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Configure F1 to integrate Cl
app.Math.F1.View = True
app.Math.F1.Source1 = "Cl"
app.Math.F1.MathMode = "OneOperator"
app.Math.F1.Operator1 = "Integral"
app.Math.F1.Operator1Setup

**Multiplier**

**Double**

**Range**
From $-1e+006$ to $1e+006$ step $1e-006$

**Description**
Sets/Queries the multiplying constant M for the integral function Fx, where $Fx = M \times \text{Input} + A$
Chapter Four

Control Reference

Adder

**Range**
From -1e-009 to 1e-009 step 1e-012

**Description**
Sets/Queries the additive A for the integral function Fx, where Fx = M . Input + A.

VerScale

**Range**
From 1e-012 to 1e+007 step 0.01, locked to 1 2 5, fine grain allowed=false, on=false

**Description**
Sets/Queries the vertical scale for the integral function trace Fx.

VerOffset

**Range**
From -1e+006 to 1e+006 step 1e-015

**Description**
Sets/Queries the vertical offset for the integral function trace Fx.

FindScale

**Description**
Initiates an action to find suitable vertical offset and scale for the integral function trace Fx.

AutoFindScale

**Description**
Set/Query the state of the 'AutoFindScale' cvar, which enables the automatic scaling of the Integral when the acquisition setup changes.

MATLABWAVEFORM

app.Math.Fx.OperatorYSetup (Operator = "MATLABWaveform")

Process a waveform using an external MATLAB application.

<table>
<thead>
<tr>
<th>MATLABCode</th>
<th>String</th>
</tr>
</thead>
</table>
MATLABCode

Range: Any number of characters

Description:
String containing the MATLAB code to execute when new data is presented.

MATLABPlot

Type: Bool

Description:
If true, the result of the MATLAB processing operation is plotted by MATLAB, in a floating window.

MATLABZeroOffset

Type: Double

Range: From -1e+009 to 1e+009 step 1e-009

Description:
Zero Offset (vertically), used to scale the waveform returned from MATLAB to the DSO's graticule.

MATLABScalePerDiv

Type: Double

Range: From 1e-009 to 1e+009 step 1e-009

Description:
Vertical Scaling, used to scale the waveform returned from MATLAB to the DSO's graticule.

PERSISTENCEHISTOGRAM

app.Math.Fx.OperatorYSetup (Operator = "PersistenceHistogram")
Chapter Four

**Control Reference**

**VerCutCenter**

*Double*

**Range**
From -1.79769e+308 to 1.79769e+308 step 0

**Description**
Horizontal coordinate of center of cut or slice from the persistence map (in horizontal units)

**VerCutWidth**

*Double*

**Range**
From -1.79769e+308 to 1.79769e+308 step 0

**Description**
Horizontal coordinate of center of cut or slice from the persistence map (in horizontal units)

**CutDirection**

*Enum*

**Description**
Specifies either a "vertical" cut direction or "horizontal" cut direction producing a histogram with the same horizontal coordinates as the chosen direction.

**Values**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical</td>
<td></td>
</tr>
<tr>
<td>Horizontal</td>
<td></td>
</tr>
</tbody>
</table>

**ClearSweeps**

*Action*

**Description**
Clear any accumulated result data. Useful for example to restart an average, or parameter statistics.

**CenterCursor**

*Action*

**Description**
Center the slice about the center of the axis, Vertical or Horizontal, depending upon the CutDirection Setting.

**RESCALE**

`app.Math.Fx.OperatorYSetup (Operator = "Rescale")`

Linearly transform the vertical values of a waveform.

<table>
<thead>
<tr>
<th>Adder</th>
<th>Double</th>
</tr>
</thead>
</table>
Chapter Four

Control Reference

<table>
<thead>
<tr>
<th>CustomUnit</th>
<th>Bool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplier</td>
<td>Double</td>
</tr>
</tbody>
</table>

**Example**

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Configure F1
app.Math.F1.View = True
app.Math.F1.Source1 = "C1"
app.Math.F1.MathMode = "OneOperator"
app.Math.F1.Operator1 = "Rescale"

**Multiplier**

*Range* From -1e+018 to 1e+018 step (9 digits)

**Description**
Sets/Queries the multiplicative constant M in the rescale function Fx = M.Input + A

**Adder**

*Range* From -1e+018 to 1e+018 step (9 digits)

**Description**
Sets/Queries the additive constant A in the rescale function Fx = M.Input + A

**CustomUnit**

*Bool*

**Description**
Enables/Disables the application of a custom unit of measurement to the rescale function trace Fx.

**ROOF**

app.Math.Fx.OperatorYSetup (Operator = "Roof")

Most positive or maximum values for an ensemble of sweeps, or "Roof"

<table>
<thead>
<tr>
<th>ClearSweeps</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweeps</td>
<td>Integer</td>
</tr>
</tbody>
</table>

**Example**

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Configure F1 to measure the Roof of the first 1000
' sweeps of C1
app.Math.F1.View = True
app.Math.F1.Source1 = "C1"
app.Math.F1.MathMode = "OneOperator"
app.Math.F1.Operator1 =

**ClearSweeps**

**Description**
Initiates a clear sweeps action for the roof function trace Fx.

**Sweeps**

**Range**
From 1 to 1000000 step 1

**Description**
Sets/Queries the maximum number of sweeps for the Roof function trace Fx.

**Example**
```
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set function trace F2 to roof.
app.Math.F2.Operator1 = "Roof"
' Set the maximum number of sweeps to 150.
```

---

**SINXOVERX**

```
app.Math.Fx.OperatorYSetup (Operator = "SinXOverX")
```

---

**TREND**

```
app.Math.Fx.OperatorYSetup (Operator = "Trend")
```

Trend of the values of a parameter, if connected to a parameter result source, or a trend of the sample values of a waveform, if connected to a waveform result source.

<table>
<thead>
<tr>
<th>AutoFindScale</th>
<th>Bool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center</td>
<td>Double</td>
</tr>
<tr>
<td>ClearSweeps</td>
<td>Action</td>
</tr>
<tr>
<td>FindScale</td>
<td>Action</td>
</tr>
<tr>
<td>Mode</td>
<td>Enum</td>
</tr>
<tr>
<td>Values</td>
<td>Integer</td>
</tr>
<tr>
<td>VerScale</td>
<td>DoubleLockstep</td>
</tr>
</tbody>
</table>

---

**ClearSweeps**

**Action**
**Description**
Clears the contents of the trend trace Fx.

**Values**

<table>
<thead>
<tr>
<th>Description</th>
<th>From 2 to 1000 step 1</th>
</tr>
</thead>
</table>

**VerScale**

| Description | From 1e-015 to 1e+012 step 0.01, locked to 1 2 5, fine grain allowed=false, on=false |

**Center**

| Description | From -1.79769e+308 to 1.79769e+308 step 0 |

**AutoFindScale**

| Description | Enables/Disables the automatic setting of the vertical scale and vertical offset for the trend trace Fx. |

**FindScale**

| Description | Sets the vertical scale and offset to optimum values to display the trend trace Fx. |
Trend mode, defines which parameter measurements are used to build the trend.

<table>
<thead>
<tr>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Trend all values</td>
</tr>
<tr>
<td>AllperTrace</td>
<td>Trend an average of all values per acquisition</td>
</tr>
<tr>
<td>Average</td>
<td>Trend all values per trace, clear before new acquisition.</td>
</tr>
</tbody>
</table>

**PARAMDIFFERENCE**

```
app.Measure.Px.Operator (ArithEngine = "ParamDifference")
```

**PARAMINVERT**

```
app.Measure.Px.Operator (ArithEngine = "ParamInvert")
```

**PARAMPRODUCT**

```
app.Measure.Px.Operator (ArithEngine = "ParamProduct")
```

**PARAMRATIO**

```
app.Measure.Px.Operator (ArithEngine = "ParamRatio")
```

**PARAMRESCALE**

```
app.Measure.Px.Operator (ArithEngine = "ParamRescale")
```

**PARAMSUM**

```
app.Measure.Px.Operator (ArithEngine = "ParamSum")
```
Chapter Four

**Control Reference**

### AMPLITUDE

`app.Measure.Px.Operator (ParamEngine = "Amplitude")`

### AREA

`app.Measure.Px.Operator (ParamEngine = "Area")`

Calculates the area of the input waveform relative to zero.

<table>
<thead>
<tr>
<th>Cyclic</th>
<th>Bool</th>
</tr>
</thead>
</table>

**Example**

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set parameter P1 to area.
app.Measure.P1.View = True
app.Measure.P1.MeasurementType = "measure"
app.Measure.P1.ParamEngine = "Area"
app.Measure.P1.Source1 = "C1"

' Enable cyclic calculation

**Cyclic**

**Description**

Enables/Disables cyclic calculation of area parameter Px, that is calculated using a whole number of cycles of the signal.

Note: the HelpMarkers aid in observing over which region of the waveform the measurement is made.

### BASE

`app.Measure.Px.Operator (ParamEngine = "Base")`

### DELTATIMEATLEVEL

`app.Measure.Px.Operator (ParamEngine = "DeltaTimeAtLevel")`

<table>
<thead>
<tr>
<th>FindLevel1</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>FindLevel2</td>
<td>Action</td>
</tr>
<tr>
<td>Hysteresis1</td>
<td>Double</td>
</tr>
<tr>
<td>Hysteresis2</td>
<td>Double</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>LevelType1</td>
<td>Type of level on first trace: absolute/percent and %Ppk, %0-Min, %0-Max with EMC option</td>
</tr>
<tr>
<td>LevelType2</td>
<td>Type of level on second trace: absolute/percent and %Ppk, %0-Min, %0-Max with EMC option.</td>
</tr>
<tr>
<td>Hysteresis1</td>
<td>Hysteresis in divisions around the level on first trace. The signal must enter the hysteresis zone (shown as a cursor) on one side and exit from the other side to qualify a transition.</td>
</tr>
<tr>
<td>Hysteresis2</td>
<td>Hysteresis in divisions around the level on second trace. The signal must enter the hysteresis zone (shown as a cursor) on one side and exit from the other side to qualify a transition.</td>
</tr>
</tbody>
</table>
FindLevel1

Description
When in absolute level mode, finds the absolute level at 50% on the first trace

FindLevel2

Description
When in absolute level mode, finds the absolute level at 50% on the second trace

PercentLevel1

Range
From 0 to 100 step 1

Description
Level on first trace in percent.

PercentLevel2

Range
From 0 to 100 step 1

Description
Level on second trace in percent.

Slope1

Description
Sign of detected transition on first trace: positive, negative, both.

Values

<table>
<thead>
<tr>
<th>Values</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Both</td>
<td></td>
</tr>
<tr>
<td>Neg</td>
<td></td>
</tr>
<tr>
<td>Pos</td>
<td></td>
</tr>
</tbody>
</table>
Slope2

**Description**
Sign of detected transition on second trace: positive, negative, both

<table>
<thead>
<tr>
<th>Values</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Both</td>
<td></td>
</tr>
<tr>
<td>Neg</td>
<td></td>
</tr>
<tr>
<td>Pos</td>
<td></td>
</tr>
</tbody>
</table>

**EXTINCTIONRATIO**

`app.Measure.Px.Operator (ParamEngine = "ExtinctionRatio")`

<table>
<thead>
<tr>
<th>Aperture</th>
<th>Double</th>
</tr>
</thead>
<tbody>
<tr>
<td>CalcType</td>
<td>Enum</td>
</tr>
<tr>
<td>CursorDisplay</td>
<td>Enum</td>
</tr>
</tbody>
</table>

**Aperture**

**Description**
For eye-diagram parameters which have an "aperture" setting, this defines the region over which the eye diagrams vertical information is analyzed.
It specifies the percentage of the central region of the eye (relative to 1 Unit Interval) which is used in the analysis.

**CursorDisplay**

**Description**
Set/Query the CursorDisplay cvar. This defines whether the source trace is annotated with 'Help Markers' generated by the measurement.

<table>
<thead>
<tr>
<th>Values</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Detailed</td>
<td></td>
</tr>
<tr>
<td>Off</td>
<td></td>
</tr>
<tr>
<td>Simple</td>
<td></td>
</tr>
</tbody>
</table>
### CalcType

**Description**
Extinction ratio units.

**Values**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>db</td>
<td></td>
</tr>
<tr>
<td>linear</td>
<td></td>
</tr>
<tr>
<td>pct</td>
<td></td>
</tr>
</tbody>
</table>

### EYEAMPLITUDE

```app.Measure.Px.Operator (ParamEngine = "EyeAmplitude")```

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aperture</td>
<td>Double</td>
</tr>
<tr>
<td>CursorDisplay</td>
<td>Enum</td>
</tr>
</tbody>
</table>

Aperture

Range
From 0 to 100 step 0.1

Description
For eye-diagram parameters which have an "aperture" setting, this defines the region over which the eye diagrams vertical information is analyzed. It specifies the percentage of the central region of the eye (relative to 1 Unit Interval) which is used in the analysis.

CursorDisplay

Description
Set/Query the CursorDisplay cvar. This defines whether the source trace is annotated with 'Help Markers' generated by the measurement.

Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Detailed</td>
<td></td>
</tr>
<tr>
<td>Off</td>
<td></td>
</tr>
<tr>
<td>Simple</td>
<td></td>
</tr>
</tbody>
</table>

EYEBER

```app.Measure.Px.Operator (ParamEngine = "EyeBER")```

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aperture</td>
<td>Double</td>
</tr>
<tr>
<td>CursorDisplay</td>
<td>Enum</td>
</tr>
</tbody>
</table>
For eye-diagram parameters which have an "aperture" setting, this defines the region over which the eye diagrams vertical information is analyzed. It specifies the percentage of the central region of the eye (relative to 1 Unit Interval) which is used in the analysis.

Aperture

**Range**
From 0 to 100 step 0.1

**Description**
For eye-diagram parameters which have an "aperture" setting, this defines the region over which the eye diagrams vertical information is analyzed. It specifies the percentage of the central region of the eye (relative to 1 Unit Interval) which is used in the analysis.

CursorDisplay

**Description**
Set/Query the CursorDisplay cvar. This defines whether the source trace is annotated with 'Help Markers' generated by the measurement.

**Values**

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detailed</td>
</tr>
<tr>
<td>Off</td>
</tr>
<tr>
<td>Simple</td>
</tr>
</tbody>
</table>

EYECROSSING

app.Measure.Px.Operator (ParamEngine = "EyeCrossing")

**Output**

**Description**
Type of output returned, percentage of eye height, or absolute voltage.

**Values**

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute</td>
</tr>
<tr>
<td>Percent</td>
</tr>
</tbody>
</table>

EYEFALLTIME

app.Measure.Px.Operator (ParamEngine = "EyeFallTime")

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aperture</td>
</tr>
<tr>
<td>HighPct</td>
</tr>
<tr>
<td>LowPct</td>
</tr>
</tbody>
</table>
Chapter Four

Control Reference

LowPct

- **Range**: From 10 to 40 step 1
- **Description**: High level in percent.

HighPct

- **Range**: From 60 to 90 step 1
- **Description**: High level in percent.

Aperture

- **Range**: From 0 to 100 step 0.1
- **Description**: For eye-diagram parameters which have an "aperture" setting, this defines the region over which the eye diagrams vertical information is analyzed. It specifies the percentage of the central region of the eye (relative to 1 Unit Interval) which is used in the analysis.

---

**EYEHEIGHT**

\[ app.Measure.Px.Operator (ParamEngine = "EyeHeight") \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aperture</td>
<td>Double</td>
</tr>
<tr>
<td>CalcUnits</td>
<td>Enum</td>
</tr>
<tr>
<td>CursorDisplay</td>
<td>Enum</td>
</tr>
</tbody>
</table>

---

Aperture

- **Range**: From 0 to 100 step 0.1
- **Description**: For eye-diagram parameters which have an "aperture" setting, this defines the region over which the eye diagrams vertical information is analyzed. It specifies the percentage of the central region of the eye (relative to 1 Unit Interval) which is used in the analysis.
Chapter Four

Control Reference

CalcUnits

Description
Specifies the units of the parameter readout, linear (volts), or decibels.

Values

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>dB</td>
</tr>
<tr>
<td>linear</td>
</tr>
</tbody>
</table>

CursorDisplay

Description
Set/Query the CursorDisplay cvar. This defines whether the source trace is annotated with 'Help Markers' generated by the measurement.

Values

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detailed</td>
</tr>
<tr>
<td>Off</td>
</tr>
<tr>
<td>Simple</td>
</tr>
</tbody>
</table>

EYEMEAN

\[ \text{app.Measure.Px.Operator (ParamEngine = "EyeMean")} \]

<table>
<thead>
<tr>
<th>Aperture</th>
<th>Double</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aperture

Range From 0 to 100 step 0.1

Description
For eye-diagram parameters which have an "aperture" setting, this defines the region over which the eye diagrams vertical information is analyzed. It specifies the percentage of the central region of the eye (relative to 1 Unit Interval) which is used in the analysis.

EYEONELEVEL

\[ \text{app.Measure.Px.Operator (ParamEngine = "EyeOneLevel")} \]

<table>
<thead>
<tr>
<th>Aperture</th>
<th>Double</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aperture

Range From 0 to 100 step 0.1
Aperture

Description
For eye-diagram parameters which have an "aperture" setting, this defines the region over which the eye diagrams vertical information is analyzed. It specifies the percentage of the central region of the eye (relative to 1 Unit Interval) which is used in the analysis.

Mouse

CursorDisplay

Description
Set/Query the CursorDisplay cvar. This defines whether the source trace is annotated with 'Help Markers' generated by the measurement.

Values

<table>
<thead>
<tr>
<th>Detailed</th>
<th>Off</th>
<th>Simple</th>
</tr>
</thead>
</table>

EYE OVERSHOOT NEGATIVE

Aperture

Description
For eye-diagram parameters which have an "aperture" setting, this defines the region over which the eye diagrams vertical information is analyzed. It specifies the percentage of the central region of the eye (relative to 1 Unit Interval) which is used in the analysis.
Description
For eye-diagram parameters which have an "aperture" setting, this defines the region over which the eye diagrams vertical information is analyzed. It specifies the percentage of the central region of the eye (relative to 1 Unit Interval) which is used in the analysis.

EYE OVERSHOOT POSITIVE

app.Measure.Px.Operator (ParamEngine = "EyeOvershootPositive")

| Aperture | Double |

Aperture
Range From 0 to 100 step 0.1

Description
For eye-diagram parameters which have an "aperture" setting, this defines the region over which the eye diagrams vertical information is analyzed. It specifies the percentage of the central region of the eye (relative to 1 Unit Interval) which is used in the analysis.

EYE PK PK NOISE

app.Measure.Px.Operator (ParamEngine = "EyePkPkNoise")

| Aperture | Double |

| Level     | Enum   |

Level
Description
Defines the level for which the peak noise is computed, One or Zero.

Values
One
Zero
For eye-diagram parameters which have an "aperture" setting, this defines the region over which the eye diagrams vertical information is analyzed. It specifies the percentage of the central region of the eye (relative to 1 Unit Interval) which is used in the analysis.

**Aperture**

*Range* From 0 to 100 step 0.1

**Description**
For eye-diagram parameters which have an "aperture" setting, this defines the region over which the eye diagrams vertical information is analyzed. It specifies the percentage of the central region of the eye (relative to 1 Unit Interval) which is used in the analysis.

**CursorDisplay**

*Description*
Set/Query the CursorDisplay cvar. This defines whether the source trace is annotated with 'Help Markers' generated by the measurement.

**Values**

<table>
<thead>
<tr>
<th>Values</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Detailed</td>
<td></td>
</tr>
<tr>
<td>Off</td>
<td></td>
</tr>
<tr>
<td>Simple</td>
<td></td>
</tr>
</tbody>
</table>

**EYERISETIME**

*Description*
app.Measure.Px.Operator (ParamEngine = "EyeRiseTime")

<table>
<thead>
<tr>
<th>Values</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HighPct</td>
<td></td>
</tr>
<tr>
<td>LowPct</td>
<td></td>
</tr>
</tbody>
</table>
Chapter Four

Control Reference

LowPct

<table>
<thead>
<tr>
<th>Range</th>
<th>From 10 to 40 step 1</th>
</tr>
</thead>
</table>

Description
High level in percent.

HighPct

<table>
<thead>
<tr>
<th>Range</th>
<th>From 60 to 90 step 1</th>
</tr>
</thead>
</table>

Description
High level in percent.

Aperture

<table>
<thead>
<tr>
<th>Range</th>
<th>From 0 to 100 step 0.1</th>
</tr>
</thead>
</table>

Description
For eye-diagram parameters which have an "aperture" setting, this defines the region over which the eye digrams vertical information is analyzed. It specifies the percentage of the central region of the eye (relative to 1 Unit Interval) which is used in the analysis.

EYESDEVNOISE

app.Measure.Px.Operator (ParamEngine = "EyeSDEVNoise")

<table>
<thead>
<tr>
<th>Aperture</th>
<th>Double</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
<td>Enum</td>
</tr>
</tbody>
</table>

Level

Description
Defines the level for which the standard deviation is computed, One or Zero.

Values

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
</tr>
<tr>
<td>Zero</td>
</tr>
</tbody>
</table>
For eye-diagram parameters which have an "aperture" setting, this defines the region over which the
eye digrams vertical information is analyzed.
It specifies the percentage of the central region of the eye (relative to 1 Unit Interval) which is used in
the analysis.

**Aperture**

<table>
<thead>
<tr>
<th>Range</th>
<th>From 0 to 100 step 0.1</th>
</tr>
</thead>
</table>

**Description**

For eye-diagram parameters which have an "aperture" setting, this defines the region over which the
eye digrams vertical information is analyzed.
It specifies the percentage of the central region of the eye (relative to 1 Unit Interval) which is used in
the analysis.

**Level**

**Values**

<table>
<thead>
<tr>
<th>Both</th>
<th>One</th>
<th>Zero</th>
</tr>
</thead>
</table>

**Aperture**

<table>
<thead>
<tr>
<th>Range</th>
<th>From 0 to 100 step 0.1</th>
</tr>
</thead>
</table>

**Description**

For eye-diagram parameters which have an "aperture" setting, this defines the region over which the
eye digrams vertical information is analyzed.
It specifies the percentage of the central region of the eye (relative to 1 Unit Interval) which is used in
the analysis.

**Output**

<table>
<thead>
<tr>
<th>Enum</th>
<th>4-29</th>
</tr>
</thead>
</table>
For eye-diagram parameters which have an "aperture" setting, this defines the region over which the
eye diagrams vertical information is analyzed. It specifies the percentage of the central region of the eye (relative to 1 Unit Interval) which is used in the analysis.

Aperture

Range From 0 to 100 step 0.1

Description

For eye-diagram parameters which have an "aperture" setting, this defines the region over which the eye diagrams vertical information is analyzed. It specifies the percentage of the central region of the eye (relative to 1 Unit Interval) which is used in the analysis.

Output

Enum

Values

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>db</td>
</tr>
<tr>
<td>linear</td>
</tr>
<tr>
<td>pct</td>
</tr>
</tbody>
</table>

**EYEZEROLEVEL**

*app.Measure.Px.Operator (ParamEngine = "EyeZeroLevel")*

**FALLATLEVEL**

*app.Measure.Px.Operator (ParamEngine = "FallAtLevel")*
LevelsAre

**Enum**

**Description**
Type of level: absolute, percent, %PkPpk or %0-Min with EMC option.

**Values**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute</td>
<td></td>
</tr>
<tr>
<td>Percent</td>
<td></td>
</tr>
</tbody>
</table>

LowPct

**Double**

**Range**
From 5 to 90 step 1

**Description**
High level in percent.

HighPct

**Double**

**Range**
From 10 to 95 step 1

**Description**
High level in percent.

SetLevel1090

**Action**

**Description**
Set the levels to 10% and 90% of full amplitude.

SetLevel2080

**Action**

**Description**
Set the levels to 20% and 80% of full amplitude.

FULLWIDTHATXX

*app.Measure.Px.Operator (ParamEngine = "FullWidthAtXX")*

<table>
<thead>
<tr>
<th>HFractionHt</th>
<th>Double</th>
</tr>
</thead>
</table>
Chapter Four

Control Reference

**HFractionHt**

*Double*

**Range**

From 0 to 100 step 1

**Description**

Percentage at which the width of the histogram is estimated (e.g. 50% gives the same answer as Full Width at Half Max).

---

**LEVELATX**

*app.Measure.Px.Operator (ParamEngine = "LevelAtX")*

<table>
<thead>
<tr>
<th>HorValue</th>
<th>Double</th>
</tr>
</thead>
<tbody>
<tr>
<td>PinToData</td>
<td>Bool</td>
</tr>
<tr>
<td>TimeFromCvar</td>
<td>Bool</td>
</tr>
</tbody>
</table>

**HorValue**

*Double*

**Range**

From -1.79769e+308 to 1.79769e+308 step 0

**Description**

if the "TimeFromCvar" is set to true, this specifies the horizontal (x) coordinate at which the waveform data "level" or value is to be evaluated

**PinToData**

*Bool*

**Description**

If set to true, the vertical values are restricted to actual data points, else if false the values can be interpolated (linearly) between points.

**TimeFromCvar**

*Bool*

**Description**

If true, the horizontal coordinate (typically time) is specified by the "HorValue" cvar, otherwise the time is specified by the input pin.

---

**MATLABPARAMETER**

*app.Measure.Px.Operator (ParamEngine = "MATLABParameter")*
### MATLABCode

**String**

**Range** Any number of characters

**Description**
String containing the MATLAB code to execute when new data is presented.

### MATLABPlot

**Bool**

**Description**
If true, the result of the MATLAB processing operation is plotted by MATLAB, in a floating window.

---

**MAXIMUM**

```matlab
app.Measure.Px.Operator (ParamEngine = "Maximum")
```

Calculates the maximum vertical value of the waveform.

**Example**

```vbnet
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")
app.Measure.P1.ParamEngine = "Maximum"
```

---

**MEAN**

```matlab
app.Measure.Px.Operator (ParamEngine = "Mean")
```

Calculates the mean value of the input waveform's vertical values. When Cyclic = true, the range of values used is limited to a whole number of cycles.

**Example**

```vbnet
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set parameter P1 to mean.
app.Measure.P1.ParamEngine = "Mean"
' Set the mean parameter for cyclic measurements.
```

---

**Cyclic**

**Bool**

**Description**
Sets/Queries whether the mean parameter Px is to be measured over a number of complete cycles.
Chapter Four

Control Reference

Example

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set parameter P2 to mean.
app.Measure.P2.ParamEngine = "Mean"
' Set the mean parameter for cyclic measurements.

Higher Calculations

MEDIAN

app.Measure.Px.Operator (ParamEngine = "Median")

Calculates the median (division between two halves) of the probability distribution of an input waveform. For periodic signals it is advisable to use Cyclic = true.

Example

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")
app.Measure.P1.ParamEngine = "Median"
' Set the measurement for a periodic signal

Cyclic

BOOL

Description
Sets/Queries whether the median parameter Px is to be measured over a number of complete cycles.

Example

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set parameter P2 to median.
app.Measure.P2.ParamEngine = "Median"
' Set the median parameter for cyclic measurements.

MINIMUM

app.Measure.Px.Operator (ParamEngine = "Minimum")

Calculates the minimum value of a waveform

Example

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")


NPOINTS

app.Measure.Px.Operator (ParamEngine = "npoints")
UsePointsInFrame

Description
Choose if the returned value is only points inside the displayed frame, or if all points in the result are reported.

OVERSHOOTNEGATIVE

\[ \text{app.Measure.Px.Operator (ParamEngine = "OvershootNegative")} \]

OVERSHOOTPOSITIVE

\[ \text{app.Measure.Px.Operator (ParamEngine = "OvershootPositive")} \]

PEAKTOPEAK

\[ \text{app.Measure.Px.Operator (ParamEngine = "PeakToPeak")} \]

PERCENTILE

\[ \text{app.Measure.Px.Operator (ParamEngine = "Percentile")} \]

<table>
<thead>
<tr>
<th>HPctPop</th>
<th>Double</th>
</tr>
</thead>
<tbody>
<tr>
<td>PctRes</td>
<td>DoubleLockstep</td>
</tr>
</tbody>
</table>

HPctPop

Range  From 0 to 100 step 1

Description
Sets/Queries the percentage of the population which falls to the left (or below) the desired percentile. For example, the median is the 50th percentile, or the horizontal coordinate of the histogram at which 50% of the population falls to the left.
PctRes

Description
This control allows you to control the precision or resolution in the percentage. The default is 1%. But you can set the resolution to as low as 1e-6 % (one part in 1e8). This is useful for finding approximate confidence limits.

PERSISTDCD

Description
For eye-diagram parameters which have an "aperture" setting, this defines the region over which the eye digrams vertical information is analyzed.

It specifies the percentage of the central region of the eye (relative to 1 Unit Interval) which is used in the analysis.
PHASE
app.Measure.Px.Operator (ParamEngine = "Phase")

OutputType

Description
Sets/Queries the output type for Phase Px.

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set parameter P1 to phase difference.
app.Measure.P1.ParamEngine = "Phase"
' Set the output unit as radians.
app.Measure.P1.Operator.OutputType = "Radians"

Values

<table>
<thead>
<tr>
<th>Degrees</th>
<th>DEGREES360</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent</td>
<td>RadianSTWOPI</td>
</tr>
</tbody>
</table>

Enum
RefLevelType

Description
Sets/Queries the unit of measurement for the test level of the reference trace.

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set parameter P1 to phase difference.
app.Measure.P1.ParamEngine = "Phase"
' Set the reference level to be measured in absolute units.
app.Measure.P1.Operator.RefLevelType = "Absolute"

Values

<table>
<thead>
<tr>
<th>Values</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute</td>
<td></td>
</tr>
<tr>
<td>Percent</td>
<td></td>
</tr>
</tbody>
</table>

SigLevelType

Description
Sets/Queries which level to use "Percent" or "Absolute" for transitions on the signal

Values

<table>
<thead>
<tr>
<th>Values</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute</td>
<td></td>
</tr>
<tr>
<td>Percent</td>
<td></td>
</tr>
</tbody>
</table>

RefHysteresis

Description
Sets/Queries the hysteresis range for the reference trace.

Example
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set parameter P1 to phase difference.
app.Measure.P1.ParamEngine = "Phase"
' Set the reference hysteresis in graticule divisions.
app.Measure.P1.Operator.RefHysteresis = 0.7
Chapter Four

Control Reference

SigHysteresis

Range: From 0 to 10 step 0.1

Description:
Sets/Queries the hysteresis range for the signal.

Example

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set parameter P3 to phase difference.
' Set the signal hysteresis in graticule divisions.
app.Measure.P3.Operator.SigHysteresis = 0.7

RefFindLevel

Action

Description:
Find the test level for the reference trace.

Example

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set parameter P3 to phase difference.
' Find the test level for the reference trace.

SigFindLevel

Action

Description:
Causes the engine to find a suitable level for either SigLevelType ("Absolute" or "Percent")

RefPercentLevel

Double

Range: From 0 to 100 step 1

Description:
Sets/Queries the test level for the reference trace in percent.

Example

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set parameter P3 to phase difference.
' Set the reference test level in percent.
Chapter Four

**SigPercentLevel**

*Double*

**Range**
From 0 to 100 step 1

**Description**
Sets/Queries the test level for the signal in percent.

**RefSlope**

*Enum*

**Description**
Sets/Queries the polarity of the measured reference transitions.

**Example**

```vbscript
' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Set parameter P1 to phase difference.
app.Measure.P1.ParamEngine = "Phase"

' Set the reference slope to negative.
```

**Values**

<table>
<thead>
<tr>
<th>Both</th>
<th>Neg</th>
<th>Pos</th>
</tr>
</thead>
</table>

**SigSlope**

*Enum*

**Description**
Sets/Queries the polarity of the measured signal transitions.

**Values**

<table>
<thead>
<tr>
<th>Both</th>
<th>Neg</th>
<th>Pos</th>
</tr>
</thead>
</table>

**POPULATIONATX**

`app.Measure.Px.Operator (ParamEngine = "PopulationAtX")`

**CursorShape**

*Enum*

**HorValue**

*Double*

**Range**
From -1.79769e+308 to 1.79769e+308 step 0
Chapter Four

Control Reference

CursorShape

Enum

Values

<table>
<thead>
<tr>
<th>Absolute</th>
<th>Difference</th>
<th>Reference</th>
</tr>
</thead>
</table>

RANGE

\[ \text{app.Measure.Px.Operator (ParamEngine = "Range")} \]

<table>
<thead>
<tr>
<th>BER</th>
<th>DoubleLockstep</th>
</tr>
</thead>
<tbody>
<tr>
<td>ErrorBias</td>
<td>Enum</td>
</tr>
<tr>
<td>PctRes</td>
<td>DoubleLockstep</td>
</tr>
<tr>
<td>Percent1</td>
<td>Double</td>
</tr>
<tr>
<td>Percent2</td>
<td>Double</td>
</tr>
<tr>
<td>SetPctFromBER</td>
<td>Bool</td>
</tr>
<tr>
<td>TxDensity</td>
<td>Double</td>
</tr>
<tr>
<td>UsePercentiles</td>
<td>Bool</td>
</tr>
<tr>
<td>VarBER</td>
<td>Bool</td>
</tr>
</tbody>
</table>

Percent1

**Range**

From 0 to 100 step 0.001

**Description**

Leftmost percentile setting (default 0.0), and always 0.0 is "UsePercentiles" is false. Otherwise you can use this control directly or indirectly to set the leftmost percentile (confidence level expressed as a percent), or this can be set automatically from BER and ErrorBias.

Percent2

**Range**

From 0 to 100 step 0.001

**Description**

Rightmost percentile setting (default 0.0), and always 0.0 is "UsePercentiles" is false. Otherwise you can use this control directly or indirectly to set the rightmost percentile (confidence level expressed as a percent), or this can be set automatically from BER and ErrorBias.
Chapter Four  

Control Reference

PctRes

- **Range**: From 1e-010 to 1 step 1e-005, locked to 1 2 4 5, fine grain allowed=false, on=false

- **Description**: When UsePercentiles is set to true, this control allows control over the resolution of percentile settings (down to 1 part in 10 to the 8th)

BER

- **Range**: From 1e-016 to 0.2 step 0.001, locked to 1 2 5, fine grain allowed=true, on=false

- **Description**: The percentile settings (left and right) can be set automatically (if SetPctFromBER is true) to correspond to a this Bit Error Ratio (BER). If "SetPctFromBER" is not true, then this control variable is ignored.

ErrorBias

- **Description**: When setting percentiles from BER, This control variable permits a symmetric error (i.e. errors to either side of mean are equally important), or a left biased (from median to left confidence limit) or right biased percentile (from median to right confidence limit). All three of these ranges can be of interest depending on what variations can cause an "error"

- **Values**

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>medianLeft</td>
</tr>
<tr>
<td>medianRight</td>
</tr>
<tr>
<td>symmetric</td>
</tr>
</tbody>
</table>

UsePercentiles

- **Description**: If false (the default) then the range calculated by this processor is really from the leftmost populated bin to the end of the rightmost populated bin. If true, then the range can be calculated using percentiles. Once this choice is set to true, you can then further set the percentiles indirectly by specifying a BER. See SetPctFromBER control variable.
SetPctFromBER

**Description**
If "UsePercentile" is set to true, and this control is set to true, then the percentiles are set using BER and the error bias settings. If "UsePercentile" is false (default) this setting is ignored.

**TxDensity**

**Description**
When setting percentile limits from BER, this control variable permits an adjustment to the confidence interval to account for other statistical weighting (such as transition density in serial data timing analysis).

**VarBER**

**Description**
When BER is used to set the percentile levels for left and right, this control allows the BER to be much more finely adjusted.

---

RISEATLEVEL

`app.Measure.Px.Operator (ParamEngine = "RiseAtLevel")`

<table>
<thead>
<tr>
<th>HighPct</th>
<th>Double</th>
</tr>
</thead>
<tbody>
<tr>
<td>LevelsAre</td>
<td>Enum</td>
</tr>
<tr>
<td>LowPct</td>
<td>Double</td>
</tr>
<tr>
<td>SetLevel1090</td>
<td>Action</td>
</tr>
<tr>
<td>SetLevel2080</td>
<td>Action</td>
</tr>
</tbody>
</table>

**LevelsAre**

**Description**
Type of level: absolute, percent, %Ppk or %0-Min with EMC option.

**Values**

| Absolute | Percent |
Chapter Four

Control Reference

LowPct

**Range**
From 5 to 90 step 1

**Description**
High level in percent.

HighPct

**Range**
From 10 to 95 step 1

**Description**
High level in percent.

SetLevel1090

**Description**
Set the levels to 10% and 90% of full amplitude.

SetLevel2080

**Description**
Set the levels to 20% and 80% of full amplitude.

ROOTMEAN SQUARE

\[ \text{app.Measure.Px.Operator (ParamEngine = "RootMeanSquare")} \]

**Cyclic**

**Bool**

Description
If true, the calculation is limited to a whole number of cycles detected in the input.

STANDARD DEVIATION

\[ \text{app.Measure.Px.Operator (ParamEngine = "StandardDeviation")} \]
Cyclic

**Description**
If true, the calculation is limited to a whole number of cycles detected in the input.

---

**TDRCAPIND**

`app.Measure.Px.Operator (ParamEngine = "TDRCapInd")`

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>CursorTimePos1</td>
<td>Double</td>
</tr>
<tr>
<td>CursorTimePos2</td>
<td>Double</td>
</tr>
<tr>
<td>Vi</td>
<td>Double</td>
</tr>
<tr>
<td>Z0</td>
<td>Double</td>
</tr>
</tbody>
</table>

---

**Z0**

**Range** From 0 to 1000 step 0.1

**Description**
The characteristic impedance of the medium under observation.

---

**Vi**

**Range** From -1 to 1 step 0.001

**Description**
Incident voltage (which is set internally)

---

**CursorTimePos1**

**Range** From -1.79769e+308 to 1.79769e+308 step 0

**Description**
This (one of two) time positions, delimits the range of the feature in the TDR signal to be analyzed for the purpose of estimating capacitance and inductance.
This (one of two) time positions, delimits the range of the feature in the TDR signal to be analyzed for the purpose of estimating capacitance and inductance.

**CursorTimePos2**

<table>
<thead>
<tr>
<th>Range</th>
<th>From (-1.79769 \times 10^{308}) to (1.79769 \times 10^{308}) step 0</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Description</strong></td>
<td>This (one of two) time positions, delimits the range of the feature in the TDR signal to be analyzed for the purpose of estimating capacitance and inductance.</td>
</tr>
</tbody>
</table>

**TIE**

\(\text{app.Measure.Px.Operator (ParamEngine = "TIE")}\)

TIE is “Time Interval Error”, or the error in expected arrival time of transitions in either a data stream or a clock signal. It is the heart of most jitter measurements (where only one signal is under analysis). The Skew processor is closely related to this function in cases where measurements are using a separate reference clock.

**WARNING:** The TIE processor is appropriate for analysis of “real-time” acquired waveforms for jitter and timing variations. It will give incorrect results for equivalent-time type waveforms.

<table>
<thead>
<tr>
<th>BaseFrequency</th>
<th>Double</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataIsNRZ</td>
<td>Bool</td>
</tr>
<tr>
<td>FindBaseFrequency</td>
<td>Action</td>
</tr>
<tr>
<td>FindLevel</td>
<td>Action</td>
</tr>
<tr>
<td>FrequencyMultiplier</td>
<td>Double</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>Double</td>
</tr>
<tr>
<td>IncludeVirtualEdges</td>
<td>Bool</td>
</tr>
<tr>
<td>IntervalsEdgeEdge</td>
<td>Integer</td>
</tr>
<tr>
<td>IntervalType</td>
<td>Enum</td>
</tr>
<tr>
<td>LevelType</td>
<td>Enum</td>
</tr>
<tr>
<td>MaxComboIntervals</td>
<td>Integer</td>
</tr>
<tr>
<td>PercentLevel</td>
<td>Double</td>
</tr>
<tr>
<td>SignalType</td>
<td>Enum</td>
</tr>
<tr>
<td>Slope</td>
<td>Enum</td>
</tr>
<tr>
<td>Summary</td>
<td>String</td>
</tr>
<tr>
<td>UseAllEdges</td>
<td>Bool</td>
</tr>
<tr>
<td>UseBaseFrequency</td>
<td>Enum</td>
</tr>
<tr>
<td>UseMultiEdgeCombos</td>
<td>Bool</td>
</tr>
<tr>
<td>UsePLL</td>
<td>Bool</td>
</tr>
</tbody>
</table>

**LevelType**

\(\text{Enum}\)

**Values**

<table>
<thead>
<tr>
<th>Absolute</th>
<th>Percent</th>
</tr>
</thead>
</table>
Chapter Four

Control Reference

PercentLevel

**Double**

**Range**  From 0 to 100 step 1

FindLevel

**Action**

**Description**
Activate this control to find the vertical level for 50% for the waveform presented at the input to this processor. (Only for LevelType = "Absolute"

**Example**

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Automatically find the level for 50% crossing as an absolute (vertical units) value

Hysteresis

**Double**

**Range**  From 0 to 10 step 0.1

**Description**
This setting establishes the zone around the level (or threshold for level crossings) which must be traversed by the signal in order for the transition to be "qualified".

Slope

**Enum**

**Values**

<table>
<thead>
<tr>
<th>Values</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Both</td>
<td></td>
</tr>
<tr>
<td>Neg</td>
<td></td>
</tr>
<tr>
<td>Pos</td>
<td></td>
</tr>
</tbody>
</table>

Visual Basic Script
FindBaseFrequency

**Action**

**Description**
When activated, starts an automatic process to attempt to learn the base frequency of the clock or data signal (see DataIsNRZ) and set the BaseFrequency control to the found value. Warning: be sure to provide as many clock or data cycles as is reasonably possible for maximum precision in the result.

**Example**

' Visual Basic Script
Set app = CreateObject("LeCroy.XStreamDSO")

' Automatically find the frequency for clock or data signal at the input of the TIE processor.

**SignalType**

**Enum**

**Values**

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock</td>
</tr>
<tr>
<td>Data</td>
</tr>
</tbody>
</table>

**BaseFrequency**

**Double**

**Range**
From 1 to 1e+011 step 1000

**Description**
This is the frequency of used to provide expected times for TIE. If a PLL is being used, this frequency must be within the capture range for the PLL (usually quite close) or you will encounter unexpected results. Typically the find frequency operation is quite good for setting this value, unless the input source is “data” and the signal is very stressed (closed eye or nearly closed eye).

**FrequencyMultiplier**

**Double**

**Range**
From 0.001 to 1000 step 0.001

**UseBaseFrequency**

**Enum**

**Values**

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Custom</td>
</tr>
<tr>
<td>Standard</td>
</tr>
</tbody>
</table>
Chapter Four

Control Reference

IncludeVirtualEdges

**Description**
When this control is set to true (default is false), the TIE values the result at the output have "virtual edges" included in the output (i.e. values which are linearly interpolated) corresponding to edges which did NOT transit. This allows a relatively uniform in time strm of values. This feature is mostly obviated by the processor "ParamUpSample"

**DatalsNRZ**

**Description**
This should be set to "true" for TIE analysis of an NRZ data stream. It should be set to false for TIE analysis of a clock signal

**IntervalType**

**Description**
Timing Analysis can either performed using the edge-edge timing methodology (as was developed for Time-Interval-Analyzers", or edge-ref, as is common for real-time oscilloscopes. Edge-Ref is highly recommended.

**Values**

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDGEEDGE</td>
</tr>
<tr>
<td>EDGEREF</td>
</tr>
</tbody>
</table>

**IntervalsEdgeEdge**

**Range**
From 1 to 500 step 1

**Description**
For edge-edge methodology, this control sets the number of UI (unit intervals) between edges to be analyzed.

**Summary**

**Range**
Any number of characters
UseMultiEdgeCombos

MaxComboIntervals

Range: From 1 to 20000 step 1

UsePLL

UseAllEdges

TIMEATLEVEL

app.Measure.Px.Operator (ParamEngine = "TimeAtLevel")

<table>
<thead>
<tr>
<th>FindLevel</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hysteresis</td>
<td>Double</td>
</tr>
<tr>
<td>LevelType</td>
<td>Enum</td>
</tr>
<tr>
<td>PercentLevel</td>
<td>Double</td>
</tr>
<tr>
<td>Slope</td>
<td>Enum</td>
</tr>
<tr>
<td>Summary</td>
<td>String</td>
</tr>
</tbody>
</table>

LevelType

Description
Level type in absolute, percent and %Ppkp, %0-min, %0-max with EMC option.

Values

<table>
<thead>
<tr>
<th>Absolute</th>
<th>Percent</th>
</tr>
</thead>
</table>
Chapter Four

Control Reference

PercentLevel

Range: From 0 to 100 step 1

Description: Level in percent.

FindLevel

Action

Description: When in absolute level, finds the level at 50%.

Hysteresis

Range: From 0 to 10 step 0.1

Description: Hysteresis around level in units of divisions.

Slope

Enum

Description: Slope of the detected transitions.

Values

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both</td>
</tr>
<tr>
<td>Neg</td>
</tr>
<tr>
<td>Pos</td>
</tr>
</tbody>
</table>

Summary

Range: Any number of characters

Description: Summary of functionality and settings of processor.

---

**TOP**

App.Measure.Px.Operator (ParamEngine = "Top")
### XATMAXIMUM

`app.Measure.Px.Operator (ParamEngine = "XAtMaximum")`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>HystDiv</td>
<td>Double</td>
</tr>
<tr>
<td>Method</td>
<td>Enum</td>
</tr>
</tbody>
</table>

#### Values

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LeftmostMax</td>
</tr>
<tr>
<td>LocalMaxima</td>
</tr>
<tr>
<td>RightmostMax</td>
</tr>
</tbody>
</table>

#### HystDiv

**Range**

From 0.1 to 5 step 0.05

### XATMINIMUM

`app.Measure.Px.Operator (ParamEngine = "XAtMinimum")`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>HystDiv</td>
<td>Double</td>
</tr>
<tr>
<td>Method</td>
<td>Enum</td>
</tr>
</tbody>
</table>

#### Values

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LeftmostMin</td>
</tr>
<tr>
<td>LocalMinima</td>
</tr>
<tr>
<td>RightmostMin</td>
</tr>
</tbody>
</table>
HystDiv

Range  From 0.1 to 5 step 0.05

XATPEAK

*app.Measure.Px.Operator (ParamEngine = "XAtPeak")*

<table>
<thead>
<tr>
<th>PeakNumber</th>
<th>Integer</th>
</tr>
</thead>
</table>

PeakNumber

Range  From 1 to 10000 step 1

Description

Peak number for which the X value is returned.
CONFIGURING DCOM CONNECTIVITY

The following items must be known and considered when creating DCOM connections from PC’s to LeCroy oscilloscope:

- The Operating System running on both the PC and Oscilloscope
- The level of visibility on an NT domain (if PC and Oscilloscope are even running on the same domain)
- Users must have administrative rights for both PC and Oscilloscope network locations

Note: Be sure to look for your particular Operating System based instructions from Windows XP or Vista, Windows 2000, and Windows Embedded.

There are 3 steps in the process of configuring a DCOM connection:

A. Prepare the PC
B. Prepare the oscilloscope
C. Test the connection

The following sections describe how to configure the PC and the oscilloscope for several operating systems. Be sure to reference the appropriate section for your OS.
A. Prepare the PC to Permit DCOM Connections to the Oscilloscope

First, find out what Operating System is running on the PC by performing the following steps:

1. Click **Start → Settings → Control Panel**.
2. On the File Explorer window shown, click **Help → About Windows** from the menu bar.

3. The operating system name is shown on the logo displayed in the pop-up. The service pack is shown underneath the logo.
Prepare the PC – Case 1: Windows XP or Vista

Note: For PCs running Windows 2000, refer to Prepare the PC – Case 2: Windows 2000 SP4 topic found later in this manual.

1. Install XStreamBrowser\Install version 1.0.4 or higher
2. Execute dcomcnfg.exe:
   - Click Start → Run, enter dcomcnfg.exe and click OK.
   - If Run is not in your start menu, open a command prompt console and run dcomcnfg.exe.
3. Expand Component Services by clicking the + plus sign or triangle symbol (this may take a few minutes).
4. If a Windows Security Alert pop-up is shown, click the Unblock button.
5. Expand Computers, right-click My Computer, and select Properties.
5. Click the **Options** tab on the Properties display, set the **Transaction timeout** to 0, and click the **Apply** button.

![My Computer Properties](image)

Close the **Properties** display if it does not close automatically, and the **Component Services** window.
Prepare the PC – Case 2: Windows 2000 SP4

1. Install XStreamBrowserInstall version 1.0.4 or higher
2. Expand Component Services by clicking the + plus sign (this may take a few minutes).
3. If a Windows Security Alert pop-up is shown, click the Unblock button.
B) Prepare the Oscilloscope

First, find out what Operating System is running on the oscilloscope by performing the following steps:

1. Click **Start → Settings → Control Panel**.

2. On the File Explorer window shown, click **Help → About Windows** from the menu bar.

3. The operating system name is shown on the logo displayed in the pop-up. The service pack is shown underneath the logo.

**Note:** For installation on a PC running Windows 2000 or Windows Embedded, refer to the Oscilloscope Preparation on Windows 2000 or Oscilloscope Preparation on Windows Embedded topics found later in this manual.
Prepare the Oscilloscope – Case 1: Windows XP or Vista

Creating a System Restore Point on Windows XP or Vista

It’s always a good idea to create a system restore point before changing any Windows XP system settings. Create one by going to Start → Programs → Accessories → System Tools → System Restore

Opening the Firewall on Windows XP or Vista

Now, we have to make sure the Windows XP firewall is open.

1. Go to Start → Control Panel → Windows Firewall. For Vista, click Change Settings
2. Click the Exceptions tab on the Windows Firewall display, verify that the LeCroyXStreamDSO Main Application item is checked, and click the Add Port button as follows.

![Windows Firewall exceptions tab](image)
3. On the Add a Port pop-up, provide port Name (DCOM), Number (135), select the TCP radio button, and click OK.

4. Now, if the PC and Oscilloscope are on the same NT domain, turn off simple file sharing by going to Start ➔ Settings ➔ Control Panel. Double-click on Folder Options. Click the View tab on the Folder Options window, scroll to the bottom, uncheck the Use simple file sharing (Recommended), and click OK.
Creating a User Account on Oscilloscopes Running Windows XP or Vista

Note: If the PC and the Oscilloscope reside on the same NT domain, there is no need to create a user account on the oscilloscope and this topic may be skipped.

If the PC and oscilloscope do not reside on the same NT domain, a user account must be created on the oscilloscope. This user account must match the username and password of the one on the PC (the same one on the PC, with administrative rights, etc.). Create a new user account on the oscilloscope as follows:

Right-click on MyComputer and select Manage. Open Local Users and Groups → Users. Right-click on a blank area in the list of users on the right and select New User…, or choose this option from the Actions menu.

Be sure to match the username and password fields from the PC’s account on the oscilloscope’s New User window.

Note: This new account is created to provide DCOM access to the oscilloscope and is not necessarily needed for any other use.

DCOM System Configuration on Windows XP or Vista

Now, on the oscilloscope:

1. Click Start → Run, enter dcomcnfg.exe and press Enter.
2. Expand Component Services by clicking the + plus sign or triangle symbol (this may take a few minutes).
3. If a Windows Security Alert pop-up is shown, click the **Unblock** button.

![Windows Security Alert](image)

4. Expand **Computers**, right-click **My Computer**, and select **Properties**.

![Component Services](image)

5. Click the **Options** tab on the Properties display, set the **Transaction timeout** to 0, and click the **Apply** button.

![My Computer Properties](image)
6. Click the **Default Properties** tab and make sure the **Enable Distributed COM on this computer** check-box is checked and **Connect** is selected from the **Default Authentication Level** drop-down.

![My Computer Properties](image1)

7. Now, on the COM Security tab, click the Edit Limits button on the Launch and Activation Permissions section.

![My Computer Properties](image2)
8. Click the **Add** button on the **Launch Permission** dialogue.

- **If the PC and Oscilloscope ARE on the same NT domain:**
  Select the **exact user account used on the PC** on the **Select Users, Computers, or Groups** dialogue and click **OK**.
• If the PC and Oscilloscope ARE NOT on the same NT domain:

Enter the user account created on the Oscilloscope (the one created to match the one on the PC during the previous Creating a User Account on the Oscilloscope topic) on the Select Users, Computers, or Groups dialogue, click Check Names and then click OK.

9. In the Launch Permissions dialogue, verify that for all permissions the Allow checkbox is checked.

10. Click OK to close the Launch Permissions dialogue. Now, click Apply, and then OK on the COM Security tab in the Computer Properties dialogue.

With all dialogues closed from the previous steps, the Component Services window should be shown.

11. Open My Computer → DCOM Config.

12. Right-click on the LeCroyXStreamDSO item and select Properties.

13. Click the Identify tab on the LeCroyXStreamDSO Properties dialog and choose The interactive user from the radio buttons.
14. On the Security tab, select the **Customize** radio button and click the **Edit** button on the Launch and Activation Permissions section.

- If the PC and Oscilloscope **ARE** on the same NT domain:
  
  Select the **exact user account used on the PC** on the Select Users, Computers, or Groups dialogue and click **OK**.

- If the PC and Oscilloscope **ARE NOT** on the same NT domain:
  
  Enter the **user account created on the Oscilloscope** (the one created to match the one on the PC during the previous Creating a User Account on the Oscilloscope topic) on the Select Users, Computers, or Groups dialogue and click **OK**.
15. In the **Launch Permissions** dialogue, verify that for all permissions the Allow checkbox is checked.

16. Now, repeat the process while editing the Access Permission settings from the LeCroyXStreamDSO Properties dialog.

![Image of LeCroyXStreamDSO Properties dialog]

17. Now, click **Start → Shut Down**, select **Restart** and click **OK** to reboot the oscilloscope.

18. When the instrument has rebooted, we can now test the connection by proceeding to the **Testing the DCOM Connection from the PC** topic at the end of this manual.
Prepare the Oscilloscope – Case 2: Windows 2000

First, we’ll prepare the oscilloscope by figuring out whether or not a new username must be configured. If the user account is necessary, we’ll create it.

Creating a User Account on Oscilloscopes Running Windows 2000

Note: If the PC and the Oscilloscope reside on the same NT domain, there is no need to create a user account on the Oscilloscope and this topic may be skipped.

If the PC and Oscilloscope do not reside on the same NT domain, a user account must be created on the Oscilloscope. This user account must match the username and password of the one on the PC (the same one on the PC, with administrative rights, etc.). Create a new user account on the oscilloscope as follows:

Right-click on MyComputer and select Manage. Open Local Users and Groups → Users. Now, right-click on a blank area in the list of users on the right and select New User...

Be sure to match the username and password fields from the PC’s account on the oscilloscope’s New User window.

Note: This new account is created to provide DCOM access to the oscilloscope and is not necessarily needed for any other use.
If the scope is in the same NT domain as the client PC, you will have to set the **Hostname** (meaning, the scope name, i.e. LCRY0901N11751) to the scope itself.

Now, close all open dialogues.

**DCOM System Configuration on Windows 2000**

Now, on the **Oscilloscope**, make the following configurations:

1. Click **Start → Settings → Control Panel**. On the Control Panel screen, double-click **Administrative Tools** and then **Component Services**.

2. Expand **Component Services** by clicking the + plus sign (this may take a few minutes).

3. Expand **Computers**, right-click **My Computer**, and select **Properties**.

4. Click the **Options** tab on the Properties display, set the **Transaction timeout** to 0, and click the **Apply** button.

5. Now, click the **Default Properties** tab and determine how you should configure your system from the following choices:
PC and Oscilloscope ARE on the Same NT Domain

- Select Connect, None, or Default on the Default Authentication Level field.

PC and Oscilloscope ARE NOT on the Same NT Domain

- Select None on the Default Authentication Level field.

6. Click the Apply button, and then close all dialogs.

7. Now, click Start → Run, enter dcomcnfg.exe and press Enter.

8. Select LeCroyXStreamDSO and click the Properties button.

9. On the Properties dialog, click the Identity tab, and select The interactive user radio button.
10. Now, click the **Security** tab. Select the **Use custom access permissions** radio button and click the corresponding **Edit** button.
11. The Registry Value Permissions dialog is shown. If the Everyone name DOES NOT have Allow Access permission, click the Add button.

12. The Add Users and Groups dialog is shown.
   - Select Everyone
   - click the Add button
   - Select Allow Access
   - Click OK

13. Be sure to click the Apply button while closing all dialogs.

14. Now, click Start → Shut Down, select Restart and click OK to reboot the oscilloscope.

15. When the instrument has rebooted, we can now test the connection by proceeding to the Testing the DCOM Connection from the PC topic at the end of this manual.
Prepare the Oscilloscope – Case 3: Windows Embedded

To prepare the oscilloscope, we first need to open the XP firewall.

**Note:** Please be advised that after some research we have discovered that the XP Firewall does not work well with DCOM (if at all). One of the problems is that a first connection is established using the default endpoint (port 135), and when a second port is opened it’s forced into the 3000-4000 range. Also, XP’s SP1 firewall does not allow specified port ranges.

1. Click **Start → Control Panel.** Double-click **Network Connections** and then **Local Area Connections.**
2. On the **Local Area Connection Status** dialog, the General tab should be shown.
3. Now, click the **Properties** button and the **Local Area Connection Properties** dialog is shown. Click the **Advanced** tab and make sure the **Protect my computer and network by limiting or preventing access to this computer from the Internet** check-box is un-checked.

   • If the PC and Oscilloscope **ARE** in the same NT domain, this is a **User Level** configuration and there’s **no need to create a new account** on the oscilloscope to allow DCOM connections.
   
   • If the PC and Oscilloscope **ARE NOT** in the same NT domain, this is a **Share Level** configuration and **you must create a new account** on the oscilloscope to allow DCOM connections. The following topic shows you how.

**Creating a User Account on Oscilloscopes Running Windows Embedded**

**Note:** If the PC and the Oscilloscope reside on the same NT domain, there is no need to create a user account on the Oscilloscope and this topic may be skipped.

If the PC and Oscilloscope do not reside on the same NT domain, a user account must be created on the Oscilloscope. This user account must match the username and password of the one on the PC (the same one on the PC, with administrative rights, etc.). Create a new user account on the oscilloscope as follows:

1. Click **Start → Settings → Control Panel.** Double-click on **User Accounts.**
2. Again, when creating this new account, make sure it matches the username and password of the one on the PC (the same one on the PC, with administrative rights, etc.).
3. Select **Limited**, click **Create Account**, and **Change an Account.**
4. Select and highlight the account name just entered and click **Create a Password.** Enter the same password from the PC account twice and click the **Create Password** button.

**Note:** This new account is created to provide DCOM access to the oscilloscope and is not necessarily needed for any other use.
DCOM System Configuration on Windows Embedded (on the Oscilloscope)

1. Click Start → Run enter dcomcnfg.exe and press Enter.

   Alternatively: You can click Start → Control Panel and double-click Administrative Tools and Component Services.

2. Expand Component Services by clicking the + plus sign (this may take a few minutes).


4. Click the Options tab on the Properties display, set the Transaction timeout to 0, and click the Apply button.

5. Now, click the Default Properties tab and make sure the Enable Distributed COM on this computer check-box is checked and the Default Authentication Level drop-down is set to Connect.
6. Click the **Default COM Security** tab. Click the **Edit Default** button on the **Access Permissions** section of the dialog.

7. The **Access Permissions** dialog is shown. Click the **Add** button.
   - If the PC and Oscilloscope **ARE** in the same NT domain, this is a **User Level** configuration. Provide the exact same user account (username and password) created on the PC (covered previously in this manual).
   - If the PC and Oscilloscope **ARE NOT** in the same NT domain, this is a **Share Level** configuration. Provide the exact same user account (username and password) created on the PC (covered previously in this manual). However, the username must be preceded by the NT **domain name** and a backslash \\.
     **Example:** LECROY\John.Smith.

8. Verify the **Allow** check-box is checked on the Access Permissions dialog.

9. Click **OK** on the **Access Permissions** dialog and **Apply**, and then **OK** on the **Properties** dialog. The **Component Services** should now be showing.

10. Access the following path from **Component Services**: **Component Services** → **Computers** → **My Computer** → **DCOM Config**. Find and right-click on **LeCroyXStreamDSO** and select **Properties**.
11. On the Properties dialog, click the **Identity** tab and select **The interactive user** radio button.

12. Click the **Security** tab on the **Properties** dialog and select the **Customize** radio button on the **Launch Permissions** section. Click the **Edit** button.
13. On the resulting dialog, click the Add button.

- If the PC and Oscilloscope ARE in the same NT domain, this is a User Level configuration. Provide the exact same user account (username and password) created on the PC (covered previously in this manual). Click OK.

- If the PC and Oscilloscope ARE NOT in the same NT domain, this is a Share Level configuration. Provide the exact same user account (username and password) created on the PC (covered previously in this manual). However, the username must be preceded by the NT domain name and a backslash \. Example: LECROY\John.Smith.

14. Repeat this process (Steps 6-13) for the Launch Permissions (on the Properties dialog). When finished, be sure to click Apply and OK on all dialogs and close the Component Services window.

15. Now, click Start → Shut Down, select Restart and click OK to reboot the oscilloscope.

16. When the instrument has rebooted, test the connection from the PC using the following topic (Testing the DCOM Connection from the PC).
C) Testing the DCOM Connection from the PC

**Note:** Only attempt to test the DCOM Connection from the PC after both the PC and Oscilloscope have been set for DCOM configuration.

Let's test the DCOM Connection from the PC to the Oscilloscope using the following steps:

1. If not already done, install **XStream Browser**.

2. Launch the **XStream Browser** application on the PC. Make sure that the version of the software is at least 1.0.3 by verifying from the Help/About screen – **Help (Menu Bar) → About**.

3. On the **XStream Browser** screen, click **File → Connect to Remote Instrument (DCOM)**.

4. The **Network Address of DCOM-enabled Instrument** dialog is shown. Provide the **Scope Name** or its **IP Address** and click **OK**.
5. The XStream Browser screen eventually shows the Automation tree (after clicking OK on the Network Address of DCOM-enabled Instrument dialog). Click through the tree and access scope values to verify connectivity to the oscilloscope.
GLOSSARY

ActiveX
Microsoft’s brand name for the technologies that enable interoperability using the Component Object Model (COM). ActiveX technology includes, but is not limited to, OLE.

Automation
COM-based technology that enables binding at run time, or late binding, to an object's methods and properties and also makes possible cross-application macro programming. Formerly referred to as OLE Automation.

Automation client
An application, programming tool, or scripting language that accesses services provided by Automation objects. Formerly referred to as Automation controller.

Automation object
An instance of a class defined within an application that is exposed for access by other applications or programming tools by Automation interfaces.

Automation server
An application, type library, or other source that makes Automation objects available for programming by other applications, programming tools, or scripting languages.

COM (COMPONENT OBJECT MODEL)
The programming model and binary standard on which OLE is based. COM defines how objects and their clients interact within processes or across process boundaries.

DCOM (DISTRIBUTED COMPONENT OBJECT MODEL)
Distributed form of COM, enables communication between computers using the COM standard.

EARLY BINDING
TODO:

LATE BINDING
The ability to bind member names to dispatch identifiers (IDs) at run time, rather than at compile time. See also ID binding and VTBL binding.

DISPATCH INTERFACES (dispinterface)
An IDispatch interface that responds only to a certain fixed set of names. The properties and methods of the dispinterface are not in the virtual function table (VTBL) for the object.